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Parallelization methods in CCTBX

• Multiprocessing: our tool of choice, with some 
modifications for easier coding

• Threading: works poorly for pure-Python code due to 
Global Interpreter Lock (GIL), although this can be 
circumvented in C++ or by starting child processes; mostly 
used internally

• OpenMP: C++ directives enable automatic parallelization by 
compiler; easy to use, but problematic for us

• CUDA/OpenCL: GPU acceleration, potentially useful for 
some applications (e.g. direct summation) but of limited use 
for Phenix; difficult to distribute or support

• Other hybrid methods possible (e.g. threading + queuing 
system)



The multiprocessing module

• Introduced in Python 2.6; used extensively in CCTBX and 
Phenix GUI

• Cross-platform support for non-shared memory 
parallelization via separate processes, with communication via 
pipes and queues

• Basic API similar to threading module

• Pool class creates persistent process pool and farms out 
jobs with automatic load balancing

• Main limitation: target function and all input and output 
objects must be pickle-able*, which requires extra work for 
Boost-wrapped C++ classes

* pickle = Python object serialization format, represents objects as binary strings



A simple example from the Python manual*

* http://docs.python.org/2/library/multiprocessing.html

• Except for the pickling restriction, this is very similar to the 
threading equivalent - but genuinely parallel
from multiprocessing import Process, Queue

def f(q):
    q.put([42, None, 'hello'])

if __name__ == '__main__':
    q = Queue()
    p = Process(target=f, args=(q,))
    p.start()
    print q.get()    # prints "[42, None, 'hello']"
    p.join()

Disadvantage: using the API this way requires explicit 
parallelization within application code

http://docs.python.org/2/library/multiprocessing.html
http://docs.python.org/2/library/multiprocessing.html


libtbx.easy_mp: parallel map() implementations

• Many of the rate-limiting steps in MX are “embarrassingly 
parallel”: multiple independent calls to the same function

• equivalent to built-in function map(func, iterable)

• examples in Phenix: refinement weight optimization, 
multiple MR searches, Rosetta building, ligand fitting

• In these cases an even simpler API is helpful

• Since much of the calling code was written to run in serial, 
parallelization may be difficult without extensive refactoring 
(e.g. to work around pickling limitation)

• Although these implementations provide parallelism, they can 
also be run in serial if multiprocessing is not desired or not 
available - no need for additional if/else logic in applications



pool_map: multiprocessing for the impatient

• Ralf ’s solution to pickling problem: hack the Pool class to take 
advantage of internal fork() calls on Unix-like systems

• The function may be specified in one of two ways:

• func is used as in the Pool, and pickled

• fixed_func will be saved as a reference in forked processes, 
avoiding pickling

• usually this would be an object method, with the object holding 
most of the data (not passed as arguments!)

• In practice, copy-on-write behavior of fork() means that large 
objects (such as scitbx.array_family arrays) will essentially 
be in shared memory as long as they are not modified

• This will not work on Windows, which does not have fork() and must 
start entirely new Python interpreter processes



pool_map in action: before
Code written for serial execution:

class optimize_xyz_refinement_weight (object) :
  def __init__ (self, model, fmodel, params,
      out=sys.stdout) :
    self.model = model
    self.fmodel = fmodel
    self.params = params
    self.trial_results = []
    for weight in [0.1, 0.25, 0.5, 1.0, 2.0, 5.0] :  
      self.trial_results.append(self.try_weight(weight))

  def try_weight (self, weight) :
    # function defined elsewhere; modifies objects in place
    out = StringIO()
    minimize_coordinates(
      model=self.model,
      fmodel=self.fmodel,
      weight=weight,
      log=out)
    sites_cart = self.fmodel.xray_structure.sites_cart()  
    return (self.fmodel.r_free(), weight, sites_cart)



pool_map in action: after

The same code, parallelized:
class optimize_xyz_refinement_weight (object) :
  def __init__ (self, model, fmodel, params,
      out=sys.stdout, nproc=Auto) :
    self.model = model
    self.fmodel = fmodel
    self.params = params
    self.trial_results = libtbx.easy_mp.pool_map(
      fixed_func=self.try_weight,
      args=[0.1, 0.25, 0.5, 1.0, 2.0, 5.0],
      nproc=nproc)

  def try_weight (self, weight) :
    ...

No additional refactoring is required for this to work!



parallel_map: adding queuing systems

• Wrapper for modules written by Gabor Bunkoczi; currently 
supports SGE, PBS, LSF, and Condor, in addition to 
multiprocessing and threading

• Mac and Windows limited to the latter two modes

• Communication handled by temporary files when a queuing 
system is used

• note that NFS latency can be problematic here

• Common libtbx.phil parameter block can be embedded in 
end-user applications

• The target function needs to be pickled, but this means we 
can also get full parallelization on Windows



An example of parallel_map use

class phaser_manager (object) :
  def __init__ (self, data_file) :
    self.data_file = data_file

  def __call__ (self, model) :
    # the actual implementation is elsewhere
    return run_phaser(self.data_file, model)

def run_all (data_file, models, method=”multiprocessing”,
    processes=1, qsub_command=None, callback=None) :
  phaser = phaser_manager(data_file)
  from libtbx.easy_mp import parallel_map
  return parallel_map(
    func=phaser,
    iterable=models,
    method=method,
    processes=processes,
    callback=callback,
    qsub_command=qsub_command)

method could also be “sge”, “pbs”, “condor”, or “lsf”

Run multiple MR searches with different models:



Limitations of multiprocessing

• I have found handling of exceptions in subprocesses 
problematic - at present it is better if the application code 
does this

• KeyboardInterrupt often not handled properly*

• Avoid printing to stdout/stderr; pool_map can be called 
with func_wrapper=”buffer_stdout_stderr” to 
intercept output

• this will return tuples of results and output strings

• the disadvantage is we can’t see output for each task as it 
completes - optional callbacks can partially alleviate this

* parallel_map does not have this limitation, but pool_map currently does - we will probably fix this in the near future



More advanced parallelization tools

• See previous two issues of our newsletter*

• Gabor’s implementation of parallel MR search uses the same 
API as parallel_map, but at a lower level

• Core modules are in libtbx.queuing_system_utils 
(although not strictly limited to queuing systems)

• Many more options available here, allowing for greater 
optimization for custom tasks where the assumptions made in 
parallel_map are inappropriate

• We would like all of these to be as robust and generally 
applicable as possible, so further improvements can and will 
be made

* http://www.phenix-online.org/newsletter

http://www.phenix-online.org/newsletter
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Other ideas we haven’t tried

• Hadoop: open-source MapReduce implementation, very 
scaleable and fault-tolerant, suitable for cloud computing; 
written in Java but supports Python

• In theory Gabor’s library could be extended to support this, but it 
appears considerably more complex than simple queuing systems

• I believe Condor has additional capabilities beyond what we 
use right now

• MPI: message-passing for highly parallel, speed-optimized 
computations; very efficient but more difficult to program 
(and/or run)

• The optimal solution may depend on intended use: distributed 
applications have many more constraints than local setups 
such as beamline clusters



Part II: a few quick words 
about unmerged data



Unmerged data in CCTBX: current state

• Supported input formats include MTZ, Scalepack, XDS, 
SHELX, CIF

• note that we do not do much with batch numbers and 
other experimental parameters

• Only CIF output is possible at present - could add MTZ

• phenix.merging_statistics will calculate intensity stats, R-
factors, CC1/2, etc.

• Xtriage will automatically call this if appropriate

• phenix.cc_star calculates CC* and related model-based 
statistics (Karplus & Diederichs 2012)

• In every other program we immediately merge redundant 
observations



phenix.merging_statistics

• Accepts any unmerged data format we have parsers for

• Similar output to SCALA et al.; reports merging R-factors and 
basic intensity statistics

• We can easily add any number of other statistics (Rano?) - 
most of these don’t even require C++ code

• The only real limitation is how much we can display at once
  Statistics by resolution bin:
 d_max  d_min   #obs  #uniq   mult.  %comp       <I>  <I/sI>  r_mrg r_meas  r_pim  cc1/2
 28.53   3.77  15699   2254    6.96  99.87   78997.8    23.4  0.061  0.066  0.025  0.997
  3.77   2.99  15703   2182    7.20  99.95   47400.1    23.1  0.061  0.066  0.024  0.997
  2.99   2.61  15641   2172    7.20 100.00   17930.9    21.1  0.074  0.080  0.030  0.996
  2.61   2.37  15309   2138    7.16 100.00   10520.1    18.6  0.090  0.097  0.036  0.995
  2.37   2.21  15044   2146    7.01  99.95    9103.8    17.2  0.093  0.101  0.038  0.995
  2.20   2.07  14571   2145    6.79 100.00    6560.2    13.5  0.108  0.117  0.045  0.993
  2.07   1.97  13973   2135    6.54 100.00    5016.1    10.8  0.121  0.131  0.051  0.992
  1.97   1.89  13540   2141    6.32 100.00    3620.6     8.6  0.145  0.158  0.062  0.984
  1.88   1.81  13010   2104    6.18  99.95    2070.5     6.8  0.197  0.215  0.085  0.980
  1.81   1.75  12963   2140    6.06  99.49    1477.4     5.6  0.247  0.270  0.108  0.970
 28.53   1.75 145453  21557    6.75  99.92   18672.0    14.9  0.073  0.079  0.030  0.998



phenix.merging_statistics: graphical display

• The actual GUI is part of Phenix, but nearly all of the building 
blocks (including plot window) are in CCTBX; can also output 
loggraph format



Long-term goals

• Automatic estimation of resolution limit?

• Use unmerged data in preparation of PDB depositions, Table 1

• this will also facilitate deposition of the unmerged intensities

• Add support for unmerged data output as MTZ

• and better support for CIF

• Incorporate local scaling (T. Terwilliger)

• Scientific goals (as part of Phenix project): use unmerged data 
directly in phasing and refinement
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