
CCTBX tools:
I. Parallelizing Python code

II. Analysis of unmerged intensities

Nathaniel Echols
DIALS workshop 3, February 2013

http://cci.lbl.gov/~nat/slides/dials_feb_2013.pdf

http://cci.lbl.gov/~nat/slides/dials_feb_2013.pdf
http://cci.lbl.gov/~nat/slides/dials_feb_2013.pdf

Parallelization methods in CCTBX

• Multiprocessing: our tool of choice, with some
modifications for easier coding

• Threading: works poorly for pure-Python code due to
Global Interpreter Lock (GIL), although this can be
circumvented in C++ or by starting child processes; mostly
used internally

• OpenMP: C++ directives enable automatic parallelization by
compiler; easy to use, but problematic for us

• CUDA/OpenCL: GPU acceleration, potentially useful for
some applications (e.g. direct summation) but of limited use
for Phenix; difficult to distribute or support

• Other hybrid methods possible (e.g. threading + queuing
system)

The multiprocessing module

• Introduced in Python 2.6; used extensively in CCTBX and
Phenix GUI

• Cross-platform support for non-shared memory
parallelization via separate processes, with communication via
pipes and queues

• Basic API similar to threading module

• Pool class creates persistent process pool and farms out
jobs with automatic load balancing

• Main limitation: target function and all input and output
objects must be pickle-able*, which requires extra work for
Boost-wrapped C++ classes

* pickle = Python object serialization format, represents objects as binary strings

A simple example from the Python manual*

* http://docs.python.org/2/library/multiprocessing.html

• Except for the pickling restriction, this is very similar to the
threading equivalent - but genuinely parallel
from multiprocessing import Process, Queue

def f(q):
 q.put([42, None, 'hello'])

if __name__ == '__main__':
 q = Queue()
 p = Process(target=f, args=(q,))
 p.start()
 print q.get() # prints "[42, None, 'hello']"
 p.join()

Disadvantage: using the API this way requires explicit
parallelization within application code

http://docs.python.org/2/library/multiprocessing.html
http://docs.python.org/2/library/multiprocessing.html

libtbx.easy_mp: parallel map() implementations

• Many of the rate-limiting steps in MX are “embarrassingly
parallel”: multiple independent calls to the same function

• equivalent to built-in function map(func, iterable)

• examples in Phenix: refinement weight optimization,
multiple MR searches, Rosetta building, ligand fitting

• In these cases an even simpler API is helpful

• Since much of the calling code was written to run in serial,
parallelization may be difficult without extensive refactoring
(e.g. to work around pickling limitation)

• Although these implementations provide parallelism, they can
also be run in serial if multiprocessing is not desired or not
available - no need for additional if/else logic in applications

pool_map: multiprocessing for the impatient

• Ralf ’s solution to pickling problem: hack the Pool class to take
advantage of internal fork() calls on Unix-like systems

• The function may be specified in one of two ways:

• func is used as in the Pool, and pickled

• fixed_func will be saved as a reference in forked processes,
avoiding pickling

• usually this would be an object method, with the object holding
most of the data (not passed as arguments!)

• In practice, copy-on-write behavior of fork() means that large
objects (such as scitbx.array_family arrays) will essentially
be in shared memory as long as they are not modified

• This will not work on Windows, which does not have fork() and must
start entirely new Python interpreter processes

pool_map in action: before
Code written for serial execution:

class optimize_xyz_refinement_weight (object) :
 def __init__ (self, model, fmodel, params,
 out=sys.stdout) :
 self.model = model
 self.fmodel = fmodel
 self.params = params
 self.trial_results = []
 for weight in [0.1, 0.25, 0.5, 1.0, 2.0, 5.0] :
 self.trial_results.append(self.try_weight(weight))

 def try_weight (self, weight) :
 # function defined elsewhere; modifies objects in place
 out = StringIO()
 minimize_coordinates(
 model=self.model,
 fmodel=self.fmodel,
 weight=weight,
 log=out)
 sites_cart = self.fmodel.xray_structure.sites_cart()
 return (self.fmodel.r_free(), weight, sites_cart)

pool_map in action: after

The same code, parallelized:
class optimize_xyz_refinement_weight (object) :
 def __init__ (self, model, fmodel, params,
 out=sys.stdout, nproc=Auto) :
 self.model = model
 self.fmodel = fmodel
 self.params = params
 self.trial_results = libtbx.easy_mp.pool_map(
 fixed_func=self.try_weight,
 args=[0.1, 0.25, 0.5, 1.0, 2.0, 5.0],
 nproc=nproc)

 def try_weight (self, weight) :
 ...

No additional refactoring is required for this to work!

parallel_map: adding queuing systems

• Wrapper for modules written by Gabor Bunkoczi; currently
supports SGE, PBS, LSF, and Condor, in addition to
multiprocessing and threading

• Mac and Windows limited to the latter two modes

• Communication handled by temporary files when a queuing
system is used

• note that NFS latency can be problematic here

• Common libtbx.phil parameter block can be embedded in
end-user applications

• The target function needs to be pickled, but this means we
can also get full parallelization on Windows

An example of parallel_map use

class phaser_manager (object) :
 def __init__ (self, data_file) :
 self.data_file = data_file

 def __call__ (self, model) :
 # the actual implementation is elsewhere
 return run_phaser(self.data_file, model)

def run_all (data_file, models, method=”multiprocessing”,
 processes=1, qsub_command=None, callback=None) :
 phaser = phaser_manager(data_file)
 from libtbx.easy_mp import parallel_map
 return parallel_map(
 func=phaser,
 iterable=models,
 method=method,
 processes=processes,
 callback=callback,
 qsub_command=qsub_command)

method could also be “sge”, “pbs”, “condor”, or “lsf”

Run multiple MR searches with different models:

Limitations of multiprocessing

• I have found handling of exceptions in subprocesses
problematic - at present it is better if the application code
does this

• KeyboardInterrupt often not handled properly*

• Avoid printing to stdout/stderr; pool_map can be called
with func_wrapper=”buffer_stdout_stderr” to
intercept output

• this will return tuples of results and output strings

• the disadvantage is we can’t see output for each task as it
completes - optional callbacks can partially alleviate this

* parallel_map does not have this limitation, but pool_map currently does - we will probably fix this in the near future

More advanced parallelization tools

• See previous two issues of our newsletter*

• Gabor’s implementation of parallel MR search uses the same
API as parallel_map, but at a lower level

• Core modules are in libtbx.queuing_system_utils
(although not strictly limited to queuing systems)

• Many more options available here, allowing for greater
optimization for custom tasks where the assumptions made in
parallel_map are inappropriate

• We would like all of these to be as robust and generally
applicable as possible, so further improvements can and will
be made

* http://www.phenix-online.org/newsletter

http://www.phenix-online.org/newsletter
http://www.phenix-online.org/newsletter

Other ideas we haven’t tried

• Hadoop: open-source MapReduce implementation, very
scaleable and fault-tolerant, suitable for cloud computing;
written in Java but supports Python

• In theory Gabor’s library could be extended to support this, but it
appears considerably more complex than simple queuing systems

• I believe Condor has additional capabilities beyond what we
use right now

• MPI: message-passing for highly parallel, speed-optimized
computations; very efficient but more difficult to program
(and/or run)

• The optimal solution may depend on intended use: distributed
applications have many more constraints than local setups
such as beamline clusters

Part II: a few quick words
about unmerged data

Unmerged data in CCTBX: current state

• Supported input formats include MTZ, Scalepack, XDS,
SHELX, CIF

• note that we do not do much with batch numbers and
other experimental parameters

• Only CIF output is possible at present - could add MTZ

• phenix.merging_statistics will calculate intensity stats, R-
factors, CC1/2, etc.

• Xtriage will automatically call this if appropriate

• phenix.cc_star calculates CC* and related model-based
statistics (Karplus & Diederichs 2012)

• In every other program we immediately merge redundant
observations

phenix.merging_statistics

• Accepts any unmerged data format we have parsers for

• Similar output to SCALA et al.; reports merging R-factors and
basic intensity statistics

• We can easily add any number of other statistics (Rano?) -
most of these don’t even require C++ code

• The only real limitation is how much we can display at once
 Statistics by resolution bin:
 d_max d_min #obs #uniq mult. %comp <I> <I/sI> r_mrg r_meas r_pim cc1/2
 28.53 3.77 15699 2254 6.96 99.87 78997.8 23.4 0.061 0.066 0.025 0.997
 3.77 2.99 15703 2182 7.20 99.95 47400.1 23.1 0.061 0.066 0.024 0.997
 2.99 2.61 15641 2172 7.20 100.00 17930.9 21.1 0.074 0.080 0.030 0.996
 2.61 2.37 15309 2138 7.16 100.00 10520.1 18.6 0.090 0.097 0.036 0.995
 2.37 2.21 15044 2146 7.01 99.95 9103.8 17.2 0.093 0.101 0.038 0.995
 2.20 2.07 14571 2145 6.79 100.00 6560.2 13.5 0.108 0.117 0.045 0.993
 2.07 1.97 13973 2135 6.54 100.00 5016.1 10.8 0.121 0.131 0.051 0.992
 1.97 1.89 13540 2141 6.32 100.00 3620.6 8.6 0.145 0.158 0.062 0.984
 1.88 1.81 13010 2104 6.18 99.95 2070.5 6.8 0.197 0.215 0.085 0.980
 1.81 1.75 12963 2140 6.06 99.49 1477.4 5.6 0.247 0.270 0.108 0.970
 28.53 1.75 145453 21557 6.75 99.92 18672.0 14.9 0.073 0.079 0.030 0.998

phenix.merging_statistics: graphical display

• The actual GUI is part of Phenix, but nearly all of the building
blocks (including plot window) are in CCTBX; can also output
loggraph format

Long-term goals

• Automatic estimation of resolution limit?

• Use unmerged data in preparation of PDB depositions, Table 1

• this will also facilitate deposition of the unmerged intensities

• Add support for unmerged data output as MTZ

• and better support for CIF

• Incorporate local scaling (T. Terwilliger)

• Scientific goals (as part of Phenix project): use unmerged data
directly in phasing and refinement

Acknowledgments

Gabor Bunkoczi
Ralf Grosse-Kunstleve

Kay Diederichs
Keitaro Yamashita

Andy Karplus
Markus Rudolph

Phil Evans
Luc Bourhis

Tom Terwilliger

