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cctbx.xfel + DIALS 

•  cctbx.xfel overall goals: 
– Still-specific indexing and integration algorithms 
– Massively parallelize reduction of millions of frames 
– Handle the multipanel detectors (CSPAD) 

•  Project goal: implement cctbx.xfel algorithms for 
indexing and integrating still images in the DIALS 
framework 
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Stills integration: thesis 

Accurately determining which weak reflections are in the 
diffraction condition is one of the most difficult steps 
in processing still images 

 

Primary citation: 

Sauter NK, Hattne J, Brewster AS, Echols N, Zwart PH, 
Adams PD (1 Dec 2014): “Improved crystal 
orientation and physical properties from single-shot 
XFEL stills.” Acta Crystallogr. D Biol. Crystallogr. 70, 
3299-309 
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cxi.index 



Footer 6 

Red: observations (from spotfinder) 
Blue: model 
Yellow: model background 





Problem case 

P1 P222 





Target functions 

F = robs − rmodel( )2
spots
∑

F = Δψcalc( )2
spots
∑



Three parameter model of reciprocal 
lattice point shape 
Juers DH, Lovelace J, Bellamy HD, Snell EH, Matthews BW 

and Borgstahl GE (2007). "Changes to crystals of 
Escherichia coli beta-galactosidase during room-
temperature/low-temperature cycling and their relation to 
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1139-1153. 

Nave C (2014). "Matching X-ray beam and detector 
properties to protein crystals of different perfection." 
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Deff=573Å 
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Deff=1000Å 
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Deff=2000Å 



16 

Deff=1000Å 
η=0.09 



Deff=1000Å 
η=0.2 



Deff=1000Å 
η=0.4 



Effects of Deff and η in reciprocal space 





Problem case 

P1 P222 



Triclinic Orthorhombic 

outliers 

Outer mosaicity envelope 
Domain size envelope 

Two-theta angle (degrees) Two-theta angle (degrees) 

Use the delta-psi vs. 2θ plot as an 
assay 



Best triclinic model Constrained  
orthorhombic model 

Refined  
orthorhombic model 

Change the algorithm for indexing the 
high-symmetry spots 



Best triclinic model Constrained  
orthorhombic model 

Refined  
orthorhombic model 

Change the algorithm for indexing the 
high-symmetry spots 



Target functions 

F = robs − rmodel( )2
spots
∑ F = Δψcalc( )2

spots
∑

F = robs − rmodel( )2 + Δψcalc( )2#
$

%
&

spots
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Triclinic Orthorhombic 

outliers 

Outer mosaicity envelope 
Domain size envelope 

Two-theta angle (degrees) Two-theta angle (degrees) 

New refinement methods, fix the 
indexing problem 



Outer mosaicity envelope 
Domain size envelope 

Two-theta angle (degrees) 

Skewed distribution of delta-Psi from 
another image 



Outer mosaicity envelope 
Domain size envelope 

Asymmetrical plot is fixed by allowing 
the detector distance to refine 

Two-theta angle (degrees) 



Problem case 

P1 P222 



Improvements in orthorhombic setting 

P1 P222 



DIALS refinement 

•  Refinement of models (rotation images) 
– Target function: x, y, and delta phi RMSD 
– Tukey outlier rejection 

•  During indexing, each candidate is refined before 
choosing likely basis vectors 
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Lysozyme images 

Footer 32 



Still indexing/integration in DIALS 

•  Refinement of models (rotation images) 
– Target function: x, y, and delta phi RMSD 
– Tukey outlier rejection 

•  Stills refinement:  
– Target function: x, y, and delta psi RMSD 
– Two rounds of refinement with different outlier 

rejection techniques: 
•  Sauter and Poon (2010) 
•  Nave parameters (reflections outside of green 

curve) 

Footer 33 



Lysozyme images: new refinement for 
stills 
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0.58 pixels 
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Dials index, refine and integrate (fully 
detailed) 
•  Index 

–  Init: use only strong refls, determine primitive setting of target 
–  Discover better experimental model 
–  Loop: 

•  find_lattices (indexer specific: fft3d, fft1d, real_space_grid_search) 
»  Determine set of candidate vectors 
»  Choose the best candidate 

•  Loop over number of cycles requested: 
»  Index reflections, convert to target setting 
»  Refine models 
»  Increase resolution 

•  Refine: 
–  Detector position/orientation, crystal cell, orientation 
–  Target function: x, y, delta phi RMSD 

•  Integrate 
–  Generate indices 
–  Predict reflections 
–  Generate integration masks 
–  Integrate 
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Dials index, refine and integrate 

•  Index 
–  Discover better experimental models 
–  Loop: 

•  find_lattices (indexer specific: fft3d, fft1d, real_space_grid_search) 
»  Determine set of candidate vectors 
»  Choose the best candidate 

•  Loop: 
»  Index reflections, convert to target setting 
»  Refine models 
»  Increase resolution 

•  Refine models 
•  Integrate 

–  Generate indices 
–  Predict reflections 
–  Generate integration masks 
–  Integrate 
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2D indexing/integration of stills 

•  Index 
–  Discover better experimental models 
–  Loop: 

•  find_lattices (indexer specific: fft3d, fft1d, real_space_grid_search) 
»  Determine set of candidate vectors 
»  Choose the best candidate 

•  Loop: 
»  Index reflections, convert to target setting 
»  Refine models 
»  Increase resolution 

•  Refine models 
•  Integrate 

–  Generate indices 
–  Predict reflections 
–  Generate integration masks 
–  Integrate 
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Refinement of crystallographic models 

•  Refinement for rotation images:  
–  Detector position/orientation, crystal cell and crystal orientation 
–  Target function: x, y, delta phi RMSD 
–  Outlier rejection using Tukey criteria 

•  Refinement for still images: 
–  Detector position/orientation, crystal cell and crystal orientation 
–  Target function: x, y, delta psi RMSD 
–  Outlier rejection using Sauter and Poon (2010) for x, y RMSDs 
–  Further outlier rejection: compute Nave parameters and 

remove reflections outside of green curve 
–  Refine twice 
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Changes: choose best triclinic 
orientation matrix: 
•  Base indexer, for each candidate: 
–  Index strong reflections for each candidate 
– Predict reflections 
– Refine models  
– Choose based on positional x, y RMSDs 

•  Stills indexer, for each candidate: 
–  Index strong reflections for each candidate 
– Predict reflections 
– Refine models 
– Choose based on positional x, y RMSDs 
– Throw out result if RMSD or green curve volume is too 

high 
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Integration 

•  Spot prediction: 
–  Index generation.  Which reflections are in the 

diffracting condition? 

–                                     where 

– Ray prediction 
•  Integration mask: pixel-wise union of nearest 10 

bright, indexed reflections 

Footer 41 



Use case: LH80 

•  LCLS XFEL experiment early May 

•  5 days, night shifts, last day 24 hours 

•  CSPAD detector, CXI end station, GVDN injection 
system 
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XFEL timings 

•  Typical run: 72000 events, 10 minutes real time 

•  Hit rate: 10%, indexing rate: 5% 

•  Time on 192 cores at LCLS: 28 minutes 

•  Current cores available at LCLS: 480 (public) + 180 
(current experiment) 
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Use case: 5-day XFEL experiment 

Initial processing 
(live after run is 
collected) 

Reprocessing 
(new parameters) 

Killed job 

Queued job 



Data rates: copy 77.5 GB over ES.NET 
to NERSC (National Energy Research 
Scientific Computing Center) 

Footer 45 



XFEL timings: NERSC 

•  Edison: Cray supercomputer, 133K cores available 

•  Got a priority boost during the experiment 

•  One run, 240 cores: 12 minutes, most of which was 
startup time. 

•  24 runs submitted at once, 240 cores each.  Startup 
time for each: 40 minutes, almost 5K computer hours. 

•  Culprit: python modules on a GPFS file system 

•  Solution: Docker 
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Slide with image on luster, showing metadata copy to 
computer node memory. 

Goal: reprocess entire experiment using 20000 cores. 

Goal: upcoming experiment, process live at NERSC. 
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Slide from Doug Jacobsen, NERSC 



Nersc: Docker 

Mention AWS? 



Putting it all together 

•  Challenges for XFEL data reduction: 
– Multi-panel detectors (CSPAD) 
– Huge amounts of data 
– Still images 

•  Solutions: DIALS implementations of cctbx.xfel 
– CSPAD CBF 
– Multiprocessing at NERSC (next test: 20000 cores) 
– New dials indexer/integrator specifically for stills 
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