

Using DIALS for XFEL data

Aaron Brewster

DIALS 6 Workshop

May 27th, 2014

cctbx.xfel + DIALS

- cctbx.xfel overall goals:
 - Still-specific indexing and integration algorithms
 - Massively parallelize reduction of millions of frames
 - Handle the multipanel detectors (CSPAD)
- Project goal: implement cctbx.xfel algorithms for indexing and integrating still images in the DIALS framework

Stills integration: thesis

Accurately determining which weak reflections are in the diffraction condition is one of the most difficult steps in processing still images

Primary citation:

Sauter NK, Hattne J, Brewster AS, Echols N, Zwart PH, Adams PD (1 Dec 2014): "Improved crystal orientation and physical properties from single-shot XFEL stills." Acta Crystallogr. D Biol. Crystallogr. 70, 3299-309

Problem case

P1 P222

Target functions

$$F = \sum_{spots} (r_{obs} - r_{model})^2$$

$$F = \sum_{spots} (\Delta \psi_{calc})^2$$

Three parameter model of reciprocal lattice point shape

Juers DH, Lovelace J, Bellamy HD, Snell EH, Matthews BW and Borgstahl GE (2007). "Changes to crystals of Escherichia coli beta-galactosidase during room-temperature/low-temperature cycling and their relation to cryo-annealing." *Acta Crystallogr. D Biol. Crystallogr.* **63**: 1139-1153.

Nave C (2014). "Matching X-ray beam and detector properties to protein crystals of different perfection." *Journal of synchrotron radiation* **21**.

Sauter NK, Hattne J, Brewster AS, Echols N, Zwart PH, Adams PD (1 Dec 2014): "Improved crystal orientation and physical properties from single-shot XFEL stills." Acta Crystallogr. D Biol. Crystallogr. 70, 3299-309

Real space Reciprocal space

Resolution independent

Finite Perfect, Mosaic Unit cell infinite domain variation spread crystal size ∞ Reciprocal lattice point $\alpha = \frac{1}{d}$ Origin of reciprocal space

Resolution dependent

Effects of $D_{\it eff}$ and η in reciprocal space

Problem case

P1 P222

Use the delta-psi vs. 20 plot as an assay

Change the algorithm for indexing the high-symmetry spots

Best triclinic model

Constrained orthorhombic model

Refined orthorhombic model

Change the algorithm for indexing the high-symmetry spots

Best triclinic model

Constrained orthorhombic model

Refined orthorhombic model

Target functions

$$F = \sum_{spots} (r_{obs} - r_{model})^2 \qquad F = \sum_{spots} (\Delta \psi_{calc})^2$$

$$F = \sum_{spots} \left[\left(r_{obs} - r_{model} \right)^2 + \left(\Delta \psi_{calc} \right)^2 \right]$$

New refinement methods, fix the indexing problem

Skewed distribution of delta-Psi from another image

Asymmetrical plot is fixed by allowing the detector distance to refine

Problem case

P1 P222

Improvements in orthorhombic setting

P1 P222

DIALS refinement

- Refinement of models (rotation images)
 - Target function: x, y, and delta phi RMSD
 - Tukey outlier rejection
- During indexing, each candidate is refined before choosing likely basis vectors

Lysozyme images

Still indexing/integration in DIALS

- Refinement of models (rotation images)
 - Target function: x, y, and delta phi RMSD
 - Tukey outlier rejection
- Stills refinement:
 - Target function: x, y, and delta psi RMSD
 - Two rounds of refinement with different outlier rejection techniques:
 - Sauter and Poon (2010)
 - Nave parameters (reflections outside of green curve)

poter

Lysozyme images: new refinement for stills

Dials index, refine and integrate (fully detailed)

- Index
 - Init: use only strong refls, determine primitive setting of target
 - Discover better experimental model
 - Loop:
 - · find lattices (indexer specific: fft3d, fft1d, real space grid search)
 - » Determine set of candidate vectors
 - » Choose the best candidate
 - Loop over number of cycles requested:
 - » Index reflections, convert to target setting
 - » Refine models
 - » Increase resolution
- Refine:
 - Detector position/orientation, crystal cell, orientation
 - Target function: x, y, delta phi RMSD
- Integrate
 - Generate indices
 - Predict reflections
 - Generate integration masks
 - Integrate

Dials index, refine and integrate

- Index
 - Discover better experimental models
 - Loop:
 - find_lattices (indexer specific: fft3d, fft1d, real_space_grid_search)
 - » Determine set of candidate vectors
 - » Choose the best candidate
 - · Loop:
 - » Index reflections, convert to target setting
 - » Refine models
 - » Increase resolution
- Refine models
- Integrate
 - Generate indices
 - Predict reflections
 - Generate integration masks
 - Integrate

2D indexing/integration of stills

- Index
 - Discover better experimental models
 - Loop:
 - · find lattices (indexer specific: fft3d, fft1d, real space grid search)
 - » Determine set of candidate vectors
 - » Choose the best candidate
 - · Loop:
 - » Index reflections, convert to target setting
 - » Refine models
 - » Increase resolution
- Refine models
- Integrate
 - Generate indices
 - Predict reflections
 - Generate integration masks
 - Integrate

Refinement of crystallographic models

- Refinement for rotation images:
 - Detector position/orientation, crystal cell and crystal orientation
 - Target function: x, y, delta phi RMSD
 - Outlier rejection using Tukey criteria
- Refinement for still images:
 - Detector position/orientation, crystal cell and crystal orientation
 - Target function: x, y, delta psi RMSD
 - Outlier rejection using Sauter and Poon (2010) for x, y RMSDs
 - Further outlier rejection: compute Nave parameters and remove reflections outside of green curve
 - Refine twice

Changes: choose best triclinic orientation matrix:

- Base indexer, for each candidate:
 - Index strong reflections for each candidate
 - Predict reflections
 - Refine models
 - Choose based on positional x, y RMSDs
- Stills indexer, for each candidate:
 - Index strong reflections for each candidate
 - Predict reflections
 - Refine models
 - Choose based on positional x, y RMSDs
 - Throw out result if RMSD or green curve volume is too high

Integration

- Spot prediction:
 - Index generation. Which reflections are in the diffracting condition?

$$- |\Delta \psi_i| \le \Delta \psi_{model} \quad \text{where} \quad \Delta \psi_{model} = \frac{d\alpha}{2} + \frac{\eta}{2}$$

- Ray prediction
- Integration mask: pixel-wise union of nearest 10 bright, indexed reflections

Use case: LH80

- LCLS XFEL experiment early May
- 5 days, night shifts, last day 24 hours
- CSPAD detector, CXI end station, GVDN injection system

XFEL timings

- Typical run: 72000 events, 10 minutes real time
- Hit rate: 10%, indexing rate: 5%
- Time on 192 cores at LCLS: 28 minutes
- Current cores available at LCLS: 480 (public) + 180 (current experiment)

Use case: 5-day XFEL experiment

Data rates: copy 77.5 GB over ES.NET to NERSC (National Energy Research Scientific Computing Center)

Tue 12 May 2015 12:00 PM - Wed 13 May 2015 12:00 PM

Total traffic

XFEL timings: NERSC

- Edison: Cray supercomputer, 133K cores available
- Got a priority boost during the experiment
- One run, 240 cores: 12 minutes, most of which was startup time.
- 24 runs submitted at once, 240 cores each. Startup time for each: 40 minutes, almost 5K computer hours.
- Culprit: python modules on a GPFS file system
- Solution: Docker

Slide with image on luster, showing metadata copy to computer node memory.

Goal: reprocess entire experiment using 20000 cores.

Goal: upcoming experiment, process live at NERSC.

Prototype Implementation: "Shifter"

Nersc: Docker

Mention AWS?

Putting it all together

- Challenges for XFEL data reduction:
 - Multi-panel detectors (CSPAD)
 - Huge amounts of data
 - Still images
- Solutions: DIALS implementations of cctbx.xfel
 - CSPAD CBF
 - Multiprocessing at NERSC (next test: 20000 cores)
 - New dials indexer/integrator specifically for stills

poter

Acknowledgements

Berkeley National Lab

Nicholas Sauter Muhamed Amin

Tara Michels-Clark

Iris Young

Nat Echols

Paul Adams

Peter Zwart

Vittal Yachandra

Junko Yano

Jan Kern

James Holton

Janelia Farm

Johan Hattne

LCLS

Uwe Bergmann

Alberto Lutman

...and many others

Diamond Light Source

David Stuart

Gwyndaf Evans

Graeme Winter

Jonathan Grimes

Richard Gildea

James Parkhurst

Luis Fuentes-Montero

CCP4

David Waterman

UCLA

David Eisenberg

Duilio Cascio

Michael Sawaya

Jose Rodriguez

Luki Goldschmidt

IBS

Jacques-Philippe Colletier

Stanford University

Axel Brunger

Bill Weis

Mona Uervirojnangkoorn

Artem Lyubimov

Oliver Zeldin

SSRL

Mike Soltis

Ana Gonzalez

Ashley Deacon

Aina Cohen

Yingssu Tsai

Scott McPhillips

BNL

Allen Orville

NIH/NIGMS grants 1R01GM095887 and 1R01GM102520 DOE/Office of Science contract DE-AC02-05CH11231

