6t DIALS Workshop: Deployment at Light Source Facilities
LBNL, Wednesday, May 27, 2015

Large Parameter Optimizations

Nicholas K. Sauter
Lawrence Berkeley National Laboratory

<
National Institutes of Health /\

p National Institute of r(reeeer '"I
General Medical Sciences

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BERKELEY LAB
Lawrence Berkeley National Laboratory




X-ray free-electron laser rationale

2H,0 + 4y > 0, + 4e™ + 4H*

Photosystem Il

Insecticidal toxin
Sawaya et al (2014) PNAS

= |

In vivo science

Photoactive yellow protein
Tenboer et al (2014) Science

9

Time domain

Opioid receptor + antagonist
Fenalti et al (2015) Nat. Struct. Mol. Biol.

PhegeNH,

Extended resolution

Cyclophilin A conformational switch
Keedy et al (2015) submitted

Photosystem |
Chapman et al (2011) Nature

Nanocrystals



Still shots / serial crystallography rationale

Photoactive yellow protein
Tenboer et al (2014) Science

9

Time domain

Opioid receptor + antagonist
Fenalti et al (2015) Nat. Struct. Mol. Biol.

PhedaN,

In vivo science Extended resolution Nanocrystals



Still shots: mathematical expression for spot partiality
is @ work in progress

Reciprocal
lattice point
,// d
1/AN i
X-rays “ .

|

_ _ 2

\ Y= Z (Iobserved Imodel)

observations
Ewald \sphere ’ /
o area / volumey,
Partiality) = --=----p=--ncemoacoos

area / volume,,

» This correction is extremely sensitive to orientation

» Crystal must be postrefined: the orientation is optimized such that the partiality-
corrected multiple measurements of the same HKL yield the most consistent
structure factor.

« Papers by Helen Ginn & Mona Uervirojnangkoorn
« Sauter (2015) J. Synchro. Rad., 22, 329



Scale factor refinement is analytically complex

B » G = per-image scale factor
F= E hz Wil =G, L))" =6 intensity

I, = (Z WhiGthi/ Z WhiGi>'

F= EhEiWhi(Ihi _Gm EiWhiGMIhi )2

D WG,
S W,G,I o EEW;;Gijh
oF i " hi T m? hi T
E=22hEiWhi(lhi_G’” EiWhiGi ) *(_ aG’" )

Express [, in terms of scale factors G,,: Hamilton, Rollet & Sparks, 1965
Derivatives require a double loop over two sets of indices m and m’

Introducing partiality requires more parameters, and further analytical
complexity



Alternate approach: Treat the intensities as independent parameters

If the /, are treated as independent variables the the complexity of the algorithm needed to
evaluate the derivatives is linear in the number of observations n O(n).

F= E W (.-G 1) .....(4)

oF
_=2E 2(=LW )
G, ) ©

oF
" 22 =G W, ). (6)

wheret=1,,-G_ I,



Model the problem: scale thousands of synthetic-data still shots

Number of observations

Take Miller indices from actual indexed images with real diffraction

Substitute calculated intensities from a PDB model, with various degrees of
shot noise

Use full intensities only — do not simulate the partiality problem

Choose randomized scale factors and B-factors for each image

. 2 2
1 2B (sm 9)
_ - image
T = é 72 Iobs — Gimagee A Imodel

obs

107 ¢ 5000

2000 -
100 ¢ ¢ 1000 .

6\@@ 800 e
10° ¢ R 408?0° Parameters refined:
o | 300+ * Scale factor G, for each image
200 * B-factor B, .. for each image
10° | 100 | * Intensity /4 for each Miller index
SIS

102} 25

102 10°  10°  10°  10°
Number of parameters



Key methodology for refinement

« Use a limited-memory quasi-Newton method (LBFGS) to minimize the target
function T.

» For each step, calculate the objective function and the first derivatives:

T

oT oT oT
0G;" " 'oB;" " al;’

« Straightforward calculation of starting values:
« Scale factor G: average intensity of all observations on each frame
« Bfactor=0

* Intensity I: average intensity of all observations of the Miller index



Key methodology for refinement

Use a limited-memory quasi-Newton method (LBFGS) to minimize the target
function T.

For each step, calculate the objective function and the first derivatives:

T

oT oT oT
0G;" " 'oB;" " al;’

However, the convergence behavior is extremely poor, presumably due to the
large number of parameters.

e.g. 400 frames with 4000 parameters requires 10° iterations and 417 seconds.

Fix this by computing curvatures. Curvatures condition the problem, properly
weighting the contribution of each free parameter to the target function, and

arriving at a more appropriate step size:
High curvature

0°T 0°T  0°T \_/
G2 " 'aB2 ol Low curvature




Refinement time (s)

Performance of LBFGS + / - curvatures

103 I I I I N N ror T
AL
5000 frames

5 173000 parameters

107 f LBFGS 400 frames <1000 seconds
' no curvatures 4400 parameters ]
10* .
LBFGS

10° with curvatures ;
107 | :
10_2 N N MR | N N MR | N N MR | N N MR | N N —

10* 102 10° 10* 10° 10°

Number of parameters



Refinement results

Scale factors B factors Intensities

[

Fitted B-factor vs. simulated B-factor

- 800 images, 1/0=143 _~ *

Log plot of fitted intensity vs. simulated intensity

c.c. = 100% | c.c. = 99.6% | c.c.=100% |

n " " n " " " n 6 " " " " " " " "
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 10t 102 10° 10* 10° 10° 107 10® 10° 10"

Fitted B-factor vs. simulated B-factor Log plot of fitted intensity vs. simulated intensity

10p

° 800 images, 1/0=45 | L]

s

-

T 10° b
)

c.c. =100% PMM

—10}

c.c.=43.8% c.c. =99.9% |

0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 100 102 10° 10* 10° 10° 100 10®° 10° 10"

Fitted B-factor vs. simulated B-factor Log plot of fitted intensity vs. simulated intensity

. .q.g.h

1 800 images, 1/0=4.6 ;**" W e

-:.-'.-

c.c. =99.9% c:.c. = 99.6%:

. . . . ) . ) ) 105 . L . . . . .
0.0 0.2 0.4 0.6 0.8 1.0 0 2 4 6 8 10 100 102 100 10° 10° 10° 107 10° 10° 10®



B-factor results are inherently noisy

exponential
due to B-factor °

2

1 —2<2Bimage M ’ | | |
e

20 angle (°)
« Exponential factor makes relatively little contribution to the target
function

« Same comment applies to the weak structure factor intensities;
potentially applies to other model parameters going in to postrefinement

« Confirmed by the follow-up experiments with a different optimizer, but
using the same target function. Minimization did converge, fit was just
poor.



LBFGS with curvatures is not a good general method

Analytical calculation of second derivatives is labor-intensive and error-
prone

Makes the code more complex, and more difficult to maintain

Discourages quick experiments with different parameters or alternate
models, which is precisely the aim of this inquiry

Our simple guess of B=0 as the initial parameter value puts us at a

Unless the curvatures are positive for all parameters, the LBFGS
minimizer does not know how to proceed.



Workarounds for non-positive curvature are not robust

 Muhamed applied pre-refinement of |, G, and B without curvatures, to put
the problem at a better position in parameter space where curvatures
could then take over.

« This turned out to still fail for a small set of B-factors in my simulations,
further illustrating that we want to avoid complex, ad hoc methods, and
rather focus on simple methods that can be generalized to other
parameter sets in the future.

* Results presented here: avoided negative curvatures by taking the
absolute value!

* Allowed the minimization to run to completion

* However, invariably took false directions where the exponential term
diverges to infinity

* Only able to run the program by turning off the trap for floating point
exceptions

* NOT a general method

« B-factors for low |/sigma examples do not always converge



Turn to non-linear least squares methods

Optimally take advantage of the least-squares form of the target.

1 —2Bimase sin )2
T = Z?(Iobs — Gimagee & ( A ) Irnodel

obs

2

Jacobian matrix: for each observation, calculate the derivative of the
residual term R, = |, — I, With respect to each free parameter.

parameters, p

observations dR
ap

These terms are used to build up the so-called normal equations Ax = b,
whose solution gives the next step for iterative non-linear least squares
parameter fitting. A =J7J

Levenberg-Marquardt algorithm arrives at a good fit in very few iterations,
with information from first derivatives only.



Problems to overcome

Optimally take advantage of the least-squares form of the target.

1 — 2Bimage sin )2
T = Z?(Iobs — Gimagee & ( A ) Irnodel

obs

2

Jacobian matrix: for each observation, calculate the derivative of the

residual term R, = |, — I, With respect to each free parameter.

parameters, p

observations dR
ap

The Jacobian matrix is notoriously large. For the 5000-image problem
considered here, 8 x 10° observations = 1.7 x 10° parameters, or 1012
terms. This could not possibly fit in memory.

However, each line of the Jacobian can be calculated sequentially and
added to the normal equations. Furthermore, perform this loop at the
C++ level, avoiding inefficient Python code.



Refinement time (s)

Performance of non-linear least squares

“
500 frames
Levenberg with 2 days
stepwise
build up
LBFGS

no curvatures

LBFGS
with curvatures

Number of parameters



Further improvements to efficiency

« Jacobian matrix: for each observation, calculate the derivative of the

residual term R, = I, — I, With respect to each free parameter.

parameters, p

observations dR
ap

« For each row in the Jacobian matrix, only three elements are non-zero:
the derivatives of the residual with respect to G, B and |

image’ ~image’ miller-

Therefore, loop over these three explicitly when building up the normal
equations, instead of over thousands of zeroes.

for (int ix = 0; ix < raw_observations.size(); ++ix) {
double Gfactor Gptr[ frame[ix] ];
double Bfactor std::exp(-2.* Bptr[ frame[ix] ] * stol_sq[ix]);
double Ifactor Iptr[ miller[ix] ];

jacobian_one_row_indices.push_back( miller[ix] );
jacobian_one_row_data.push_back(-Bitem * Gitem); //derivative with respect to I

jacobian_one_row_indices.push_back(N_I + frame[ix]);
jacobian_one_row_data.push_back(-Bitem * Iitem); //derivative with respect to G

jacobian_one_row_indices.push_back(N_I + N_G + frame[ix]);
jacobian_one_row_data.push_back(Bitem * Gitem * Iitem * 2. * stol_sq[ix]); //derivative with respect to B

add_residual (residuals[ix], weights[ix]);
add_equation_sparse(-residuals[ix], jacobian_one_row_indices, jacobian_one_row_data, weights[ix]);

« Specific code for this parameterization, down to the add_equation level,
but after all this is only 13 lines of code, so it's worth it!



Refinement time (s)

Performance of non-linear least squares

Number of parameters

10° , , , | |
10° . _:
500 frames
Levenberg with 2 days
10* stepwise _:
build up
3 ~
10 Levenberg with 500 frames .
sparse add 1 hour
102 equations LBFGS _:
no ]
1 curvatures LBEGS
1o with 3
A curvatures
10° 500 frames ]
4 seconds
10" _:
10 e
10 10° 103 104 10° 10°



How can we break the 500 frame/1 hour limit?

« |dea 1: divide and conquer.

« cspad.metrology. Macrocycle iteration over two refinements:
« Tile positions & rotations, beam position, crystal distance, and
crystal Rot, (done by LBFGS + curvatures)
 Individual Levenberg refinement for each crystal of unit cell, and
crystal rotations Rot, and Rot,.

« cctbx.prime. Microcycle iteration over:
» G (scale) factors
» Crystal orientation
* Mosaic parameters
« Unit cell dimensions
Macrocycle over:
» Reference intensities

« The drawback to these approaches is that independent refinement of
parameters ignores covariance.

« To facilitate research into new parameterizations, how far can refinement
be pushed without dividing parameters into separately-refined piles?



Examining the normal matrix

» ldea 2: Use better algorithms to solve large normal matrices A.
« Solving Ax = b gives the step size for Levenberg-Marquardt iterations
* Ais a positive-definite symmetric square matrix, N, .. X Nparams

« Rate limiting step in calculating x = A-7b is the use of the Cholesky
decomposition of A into the product A =LL", where L is a lower-
triangular matrix, or “Cholesky factor”.

/ G B

R S ——— XL X-

X e e e e e e aaaaan e e X X iaaaaa.aXo
........ x.
....... -

miller image image

/

miller

image %o

......

image| 0 EI

......

Example normal matrix X Corresponding Cholesky factor



Analytically compute the Cholesky fill-in with graph theory

X X X X
X X X | X |
X XX X
X X X X
XX X X E— X X X
XX X X XX X
X X X X X X ++X
X X X X X X+++X
| X XXX X | X XXX X
Normal matrix Cholesky factor

O—6—w O—6— O—6—® (6—(@)
..
O——® — (OO — (K — &
bhd NG Y Y

¥
(6) (6)

o <—~~ (oo
(s)



Fill-in can be minimized by permuting the order of parameters

XXXX XXX XX X X |
X X X X
X X X X
X X X X
X X X X
X x X X
X X X X
X X X X
| x X | XX XXX XXXX |

100% fills zero fills



Significant efficiency benefit: only calculate the non-zero elements

# non-zero | Fraction of
elementsin| elements
Cholesky | non-zero

# #
images

parameters

200
300
500
1000
2000
5000

786
1,884
4,383

55,964
143,279
172,695

6x10°
4x10°
2x10
3x10°
2x10%°
3x1010

# non-zero Fraction
elements in of
normal | elements
matrix non-zero
9,565 2.97%
35,611 1.97%
188,428 0.69%
1,672,461 0.11%
6,310,536 0.06%
16,509,042 0.11%

factor
95,247
213,967
681,931

3,618,497
14,171,257
66,346,347

29.58%
11.82%
2.49%
0.23%
0.14%
0.44%



Optimization package pros & cons

Pros:
* Very large community effort, popular
* Many algorithms supported

Cons:

Scipy.optimize.leastsq depends on fortran

* Memory contention forces special
python import order

* Requires the source developer to install
fortran compiler

* Very difficult for us to prepare portable
multiplatform binary distribution

e Cython compiler is required

* Lots of other dependencies—ATLAS, LAPACK

etc.

* Levenberg-Marquardt already in scitbx

* Only supports sparse-matrix Cholesky with
additional package scikits.sparse.cholmod
(GPL?)

Pros:

* Very large community effort, actively
developed

* Many linalg algorithms supported
* Based solely on C++ template library
* No additional compilers needed

* No compiled libraries; operates
exclusively through include files

* Permissive license

Cons:
* No Python interface

* But the relevant algorithms are
easily exposed (40 lines of code)
through our normal boost-
wrappers; 2-day effort, no attempt
to provide to-python/from-python
wrappers for Eigen data structures;
LBNL to provide example



Levenberg-Marquardt numerical results

* Virtually identical to LBFGS results

* Small improvements, especially in B-factor correlation
coefficients, where LBFGS curvatures had produced
numerical instability

Example:

1000 images, |/sigma=4

LBFGS: G (r=99.8%) B (r=-3.1%) 1 (99.3%)
L-M: G (r=99.9%) B (r=16.1%) | (99.2%)



Refinement time (s)

Performance of non-linear least squares

Levenberg with
stepwise

build up ~

Levenberg with
sparse add
equations

~

Levenberg
Eigen

LBFGS
with
curvatures

5000 frames, 3 hours

5000 frames, 10 minutes

Number of parameters



Next steps

Optimize code:

* Check for memory leaks

Connecting it up to DIALS & XFEL:
* Include eigen source in the developer build, add include path
» Extend the scitbx/Istbx Python layer to include a sparse Cholesky option

* “How-to” example for writing fast-running build_up() of normal equations (C++)

Applications:

* Drop-in optimizer replacement for cspad.metrology (in the cctbx.xfel context); refine
all parameters in one go.

* Migrate from the ucbp3 spot prediction code to the dxtbx framework
*  Will be a first step toward doing all metrology refinement in DIALS
* Publish soon

* Drop-in optimizer replacement for the postrefinement option in cxi.merge

* Experimental platform for adding new partiality models



Scaling it up

Use “divide and conquer” to go beyond 5000 images

2000
images

Refine parameters on overlapping sets of 2000 images
Average the duplicate parameter fits & do another round
....on 64 cores, this processes 64,000 images in 1 — 2 hours

Scales up to many nodes if MPI interface is used, to handle 10° images



DIALS: Diffraction Integra’uon for Advanced Light Sources
http://dials.Ibl. gov . [\

Iris Young Muhamed Amin| |

Tara Michels-Clark Aaron Brewster
Nicholas Sauter :

Large-parameter outlook:
* Rotation data: application to multicrystal & scan varying datasets
« Enable still-shot methods for synchrotron experlments

« Experimental calibration (metrology)




