
Novel Uses for xia2 in a Beamline
Environment

Harvard Medical School, July 2012

Graeme Winter

Diamond Light Source

July 2012

Overview

Context

At Diamond Light Source

Options for lower level interaction

How does this help?

Acknowledgements

Thanks to Nick Sauter for suggesting this - moving in an
interesting direction

xia2 funded through BBSRC e-Science e-HTPX project,
CCP4, BioXHit and Diamond Light Source

Users, providers of test data, lots of people who have provided
input into project, Diamond Light Source staff

Context / Background

xia2 initially developed as part of e-HTPX project, supported
by CCP4 and EU, now Diamond Light Source

Started work on DNA project in 2002 - kept this in mind

Original thoughts behind xia2 were to cover scope from data
collection through reduction to phasing / refinement

Implemented middle bit

xia2 is properly free open source software

xia2 possible conduit for delivering DIALS software to
beamlines

xia2 at Diamond Light Source

Full functionality available to users manually

Run automatically (has been so for five years or so) on a
per-sweep basis - xia2 -blah -image /path/to/an/image

Automatic running essentially fire and forget - results available
to user, not integrated into data collection system

Rather than providing fine grained user control, run several
jobs

Inspired development of fast DP - a very much cut down
“script” for performing simple data analysis with XDS, in very
short time

Fast DP
Fast processing with Fast DP - script which runs XDS on up to 480
cpus to deliver data reduction (frames to merged MTZ, merging
stats) in under 2 minutes, even for 1800 frame Pilatus sets.

 Legend

Autoindex

XDS steps:
XYCORR
INIT
COLSPOT
IDXREF

Integrate

XDS steps:
DEFPIX
INTEGRATE
(cluster)

Refine/Scale

XDS step:
CORRECT

Select PG

Pointless

Merge

Scala

Reflections

Statistics
Step

Program

Cell / symmetry Triclinic (P1)

Correct PG

XDS steps:
DEFPIX
INTEGRATE
(cluster)

XDS steps:
DEFPIX
INTEGRATE
(cluster)

Dimple
Following Fast DP - compute difference map from known native
structure, particularly useful for industry. Map available within a
few minutes of the experiment.

Symmetry
PDB -> MTZ

Cell
MTZ -> PDB

Preparation
Refmac
rigid body

Refmac
minimisation

Map

Truncate

Phaser
MR

R > 45%

Coot:
Find Blobs

CCP4mg:
Generate png

Per-image analysis

Run DISTL on every image / 250 from wedge, plot - gives near
real-time feedback on diffraction. Useful for characterising what
happened to sample.

Benefits with this approach

Lack of user interaction - they can get on with data collection

Now considered by users a beamline component - they
complain on feedback forms when it fails

All data is processed during the beam time - users can plan
experiments properly

Issues with this approach

Lack of user interaction

Timescale, hence Fast DP (next slide)

Per-sweep xia2 problem: does not sit nicely with e.g. MAD,
multi-sweep data collection

Feedback to user is not assertive i.e. direct feedback to data
collection system

Does not handle incremental feedback well

Lower-level interaction with xia2

Main xia2 program is a print statement (really) - all processing
performed to deliver the results of this print statement

However, the code is just Python

Let’s look at a lower level interaction

from Handlers.PipelineSelection import add_preference

directory, image = os.path.split(sys.argv[1])

from XProject import XProject

from XCrystal import XCrystal

from XWavelength import XWavelength

xp = XProject(name = ’example’)

xc = XCrystal(’demonstration’, xp)

xw = XWavelength(’native’, xc)

xw.add_sweep(’native’, directory, image)

print ’Scaled data: %s’ % xc.get_scaled_merged_reflections()[’mtz’]

Observations

Code above will work

It will also write a lot of junk to stdout

May also generate extra directories - full fat version next slide

from Handlers.PipelineSelection import add_preference

from Handlers.Streams import streams_off

from Handlers.Environment import Environment

Environment.dont_setup()

streams_off()

add_preference(’indexer’, ’labelit’)

add_preference(’integrater’, ’xdsr’)

add_preference(’scaler’, ’xdsr’)

directory, image = os.path.split(sys.argv[1])

from XProject import XProject

from XCrystal import XCrystal

from XWavelength import XWavelength

xp = XProject(name = ’example’)

xc = XCrystal(’demonstration’, xp)

xw = XWavelength(’native’, xc)

xw.add_sweep(’native’, directory, image)

print ’Scaled data: %s’ % xc.get_scaled_merged_reflections()[’mtz’]

Moving on

This code will silently process your data, scale and return a
merged MTZ file containing intensities and amplitudes

Provided handle to xp or xc kept can interrogate nearly
everything

Aha! why can’t I just add another sweep and get reflections
again? Bugs

Code was never written to work like this, though with a
couple of hours work could be

Move control of system from command-line input to Phil
objects - more easily embedded

How does this help?

Lower level access to xia2 machinery

More control from caller pespective

Capability to provide user interface - user can (in principle)
add and remove sweeps, tweak processing on live system

Capability for system to keep adding sweeps (say multi-crystal
environment) until complete data set achieved

What needs doing?

Mainly resolving dependencies in the analysis - xia2 is
dynamic enough already

e.g. when sweep added to wavelength, scaling needs repeating
e.g. when images added to a sweep integration needs repeating

Probably a couple of days work - not hours, I tried the other
day

Testing - this is an approach which has never been tested
inside xia2 though should work

