
Scripting and programming using

cctbx

(Computational Crystallography Toolbox)

Ralf Grosse-Kunstleve
Crystallographic Computing School, Oviedo, Spain, Aug 16-22, 2011

Wednesday, August 17, 2011

Luc’s Observation

Collaboration is always a waste of time in
the short term but we both learn how
invaluable it is on the mid to long term.

Jun 3, 2008

Wednesday, August 17, 2011

Aspects of a Library

• Functionality

• Environment

• Implementation languages

• Portability

• Developer community

• Reusability

• Stability

• Maintainability

Wednesday, August 17, 2011

Functionality - major cctbx modules

• Comprehensive symmetry algorithms (uctbx, sgtbx)
• Handling of reflection data (miller.array, iotbx.reflection_file_utils)
• Structure factor calculations (direct summation & FFT approximation)
• FFT library (fftpack)
• Map manipulation tools (maptbx)
• Direct methods (dmtbx)
• Charge flipping (smtbx)
• General purpose minimizers (lbfgs)
• Fully featured small-molecule refinement (smtbx)
• All major components for macromolecular refinement (mmtbx)

• TLS constraints
• Rigid-body refinement
• Bulk-solvent correction
• Twin refinement
• NCS restraints (Cartesian space, torsion-angle space)
• Secondary structure restraints
• Simple molecular dynamics (Cartesian space, torsion-angle space)
• Simulated annealing (Cartesian space, torsion-angle space)
• Validation tools

• Data reduction tools: spot finding, indexing, integration (spotfinder, rstbx)
• Fast comprehensive PDB handling library (iotbx.pdb)
• Comprehensive CIF library (iotbx.cif)
• Comprehensive handling of SHELX ins/res/hkl files
• Family of array types and matrix algorithms (scitbx.array_family, scitbx.matrix)
• Parameter handling language (libtbx.phil)
• OpenGL support (crys3d, gltbx)
• OpenMP support (omptbx)
• Fortran to C++ converter (fable)
• Modular, non-intrusive build system (libtbx, SCons)

Wednesday, August 17, 2011

Environment

langpop.com

Wednesday, August 17, 2011

Environment

• Internet has fundamentally changed software development

• Confluence of technologies

• The World-Wide-Web in which we live

• Revision control systems (e.g. Subversion)

• Mailing lists for fast asynchronous exchange of ideas

• Issue tracking systems (e.g. Bugzilla)

• Open-source tool chain

• Linux ← GCC ← Boost, Python ← SCons ← cctbx

Wednesday, August 17, 2011

Implementation languages - Spectrum

Python

 Interpreted, Object Oriented, Exception handling

C++

 Compiled, Object Oriented, Exception handling

C

 Compiled, User defined data types, Dynamic memory management

Fortran

 Compiled, Some high-level data types (N-dim arrays, complex numbers)

Assembler

 Computer program is needed to translate to machine code

Machine code

 Directly executed by the CPU

Wednesday, August 17, 2011

Implementation languages - Efficiencies
!
"#
$
"%
&
&
'
"(
!
"#
)
*
+,
-
./
0
(

!0/1#2(

344(

3(

5#"/"%2(

677'&890(

:%+1.2'(+#)'(

;*2,&'(!'"<#"&%2+'(
Wednesday, August 17, 2011

Implementation languages - Matrix

Dynamically typed
⇒ Programmer Productivity

Statically typed
⇒ Speed

Interpreted
⇒ Programmer Productivity Python Java

Compiled to machine code
⇒ Speed PyPy C++

Wednesday, August 17, 2011

Implementation languages - Pros & Cons

Python

 + Very high-level programming

 + Easy to use (dynamic typing)

 + Fast development cycle (no compilation required)

 − Too slow for certain tasks

 + Easy multiprocessing on multi-core machines (1800 × 64)

 + Abstraction of Operating System / Intersection with role of Operating System

C++

 + High-level or medium-level programming

 − Many arcane details (strong static typing, C legacy)

 + Largely automatic dynamic memory management (templates)

 + Much faster than Python

With enough attention, performance within 15% of FORTRAN

Wednesday, August 17, 2011

Portability

• “How easy is it to install cctbx on my machine?”

• Reusing libraries
+ Increased productivity (“don’t re-invent the wheel”)
− Dependencies

• End-users: distribute binaries
 + Good approach in many situations
 + Eliminates time-consuming compilation
 − Requires access to many machines
 − May lead to surprises (“strange crashes”)

• Developers: need source by definition

• Easy installation from sources is essential

• Side-effect: easy installation from sources for end-user

• Open-source is essential

Wednesday, August 17, 2011

Portability - cctbx approach

• Click to download cctbx_python_272_bundle.selfx
perl cctbx_python_272_bundle.selfx

• Installs Python and cctbx including all dependencies from scratch

• There are also binary bundles (all major platforms including Windows)

• cctbx includes tools for building bundles

• often easy to tie external sources into the cctbx build system

• Only dependencies: Operating System, C/C++ compiler

Wednesday, August 17, 2011

Developer community

• One-man project vs. group of developers

• Pre-internet era: mostly one-man projects or one-lab projects

• Post-internet era:

• community geographically spread out

• diverse communities, but with intersecting interests

• communities are constantly improving infrastructure for
working together most efficiently

• self-organizing division of labor

Wednesday, August 17, 2011

cctbx contributors with >100 commits

registered developers: 42

Wednesday, August 17, 2011

Community resources

Wednesday, August 17, 2011

Reusability

• Object-oriented paradigm

• Better name IMHO: context-oriented (namespaces)

• Classes ≈ enhanced namespaces

• Classes ≈ functions that preserve context (data & algorithms)

• Polymorphism

• Runtime (dynamic typing, C++ virtual functions)

• Compile-time (C++ templates)

• Exception handling

• Bertrand Meyer (Eiffel creator) ca. mid 1990’s:
“It is impossible to write reusable code without exception handling.”

Wednesday, August 17, 2011

Stability

• Automatic testing

• Multiple developers: nobody knows all interactions

• “No copy-and-paste” paradigm → generalization of existing code

• Requires discipline: tests must be written together with the
production code

• Interface changes

• OK to change relatively new interfaces

• Long-established interfaces should only be changed with great
care (and ample warnings to anyone who could potentially be
affected)

Wednesday, August 17, 2011

Typical development cycle

• Initial implementation in Python

• Much faster than writing C++ (factor 3-5)

• Tests are developed at the same time (ca. 1/3 of initial effort)

• Often results in efficient code since optimized C++ libraries are reused

• Analysis of working code

• Find performance bottlenecks (if any)

• Port rate-limiting parts to C++ (ca. 1/2 of total effort)

• cp algorithm.py algorith.hpp

• factor 10-30 speedup

• Bind C++ implementation to Python (ca. 1% of total effort)

• Adjust prototype to make use of C++ version

• Remove original Python code

• Or reuse in unit test, comparing the results of the two versions

• Integrate into application

Wednesday, August 17, 2011

Typical release cycle

• Run automatic multi-platform build & tests

• Manually check the results

• Tell co-workers about problems

• Wait for fixes

• Rerun until all problems are resolved

• Regenerate the online documentation

• Release (trivial operation)

Wednesday, August 17, 2011

Maintainability

• “Redundancy is the worst enemy of long-term development.”

• “Each time you copy-and-paste more than three lines without
modifying at least two you are making a mistake.”

• Redundancy leads to code inflation

• Severe problem for large projects

• cctbx sizes after about ten years of development:

• ca. 600k lines (20+ MB) source code

• (ca. ⅓ unit test code)

Wednesday, August 17, 2011

Tutorials

Central cctbx types

Wednesday, August 17, 2011

Acknowledgments

• Luc Bourhis

• Phenix developers

• Paul Adams, Pavel Afonine, Nathaniel Echols, Richard Gildea,
Jeffrey Headd, Tom Ioerger, Airlie McCoy, Nigel Moriarty, Nicholas
Sauter, Tom Terwilliger, Peter Zwart

• CCP4 (Martyn Win, Kevin Cowtan)

• David Abrahams (Boost.Python)

• NIH

• DOE

• Phenix industrial consortium members

Wednesday, August 17, 2011

