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Introduction

To facilitate ongoing efforts to analyze and
process problematic diffraction images, we have
developed a simple, embeddable application in
CCTBX (Grosse-Kunstleve et al, 2002) to view a
wide variety of detector formats using the
wxPython library (http://www.wxpython.org). In
the past, LABELIT (Sauter 2011) was capable of
generating image files containing annotated
sections of the diffraction pattern, but this was
limited to non-interactive use. Debugging of
indexing and integration code necessitated a more
robust and configurable interface capable of
displaying images along with detailed visual
feedback on the performance of the processing
algorithms.

Program description

The standalone program can be run as
phenix.image_viewer (also available in the PHENIX
GUI under “Utilities”), and supports most common
file formats (including ADSC, MAR, RAXIS, and
CBF). The interface (Figure 1) is similar to the
versatile X11-based image viewer adxv
(http://www.scripps.edu/~arvai/adxv.html)  in
many respects, although we have diverged from
this design where appropriate. (In particular, the
functions of the left and middle mouse
buttons have been swapped to simplify use de
on Macintosh laptops.) The image display
itself occupies most of the main window, with
view controls in a separate floating window.

To aid navigation of large images at high
magnification, the control window
incorporates a thumbnail view of the overall
image; clicking in this view recenters the main
viewport. The thumbnail image incorporates a
feature previously implemented in LABELIT: when
sampling the raw image to produce the thumbnail,
multiple image pixels are polled to produce each
thumbnail pixel, with the highest intensity value
being taken instead of the average value. This
results in a much higher contrast that allows the
lattice diffraction to be clearly visible in the
thumbnail even for relatively weak images (Figure

1).
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Internally, each detector image is essentially an
integer array indexable by X,Y coordinates. This is
converted to an ASCII string representing the
image in a generic format, with the desired
brightness and color scheme applied in place of
the raw intensity values. The conversion is
applied only when these settings are modified;
scaling and panning is performed entirely by the
built-in image manipulation functions in
wxPython. Actual display is accomplished by
rendering the appropriate section of the image as
a bitmap. Although this method is less ideal at
lower magnification due to the compression of
spots and resulting loss of contrast, it allows
interactive use to remain extremely fast. The
zoom panel also allows display of individual
intensity values superposed on the pixels (Figure
1), similar to features in adxv and XDisplayF
(Otwinowski & Minor, 1997).

The viewer can easily be embedded in other
applications, either as part of a larger interface or
at the end of a command-line process. The “paint”
method of the display panel is designed to allow
extension with custom draw commands using the
wxPython APIL. For instance, the following simple
code overlays yellow circles around integrated
spots:

f draw spot predictions (window, dc, image)
import wx
scale = window.get scale()
predictions = image.get drawable predictions()
dc.SetPen(wx.Pen((255,255,0), 1))
dc.SetBrush (wx.TRANSPARENT BRUSH)
for (x, y) in predictions :
dc.DrawCircle(x, y, 8*scale)

A slightly more complex real-world example is
shown in Figure 2. The main limitation to these
overlays is the number of function calls that can
be performed before the interface slows
noticeably. In practice, the programmer must
incorporate information about the current scale
and drawable area of the image, and simplify or
clip the image annotations where appropriate.
The Python class used to manage and convert
image data provides a convenience method,
get_drawable_points, that accepts as input a list of
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Figure 1: The main image viewer interface, showing a diffraction pattern from E. coli dihydrofolate reductase
(provided by James Fraser, UCSF). The zoom window is visible at lower right.

x,y coordinates (i.e. detector pixels) and filters out
those which occur outside the current view area.

The program distlimage viewer (Figure 3)
provides a simple example of how the module may
be quickly re-used as a driver for additional
computation. The settings panel is modified to
control the applicaton distl.signal_strength, a spot-
finding tool designed for rapid evaluation of
crystal diffraction (Sauter, 2010). Spot detection
is triggered by wxPython events, such as changing
the “minimum spot area” field, and the interface is

redrawn with the new predictions. The

subclassed interface consists of less than 200 lines ] ) ] ’ )
Figure 2: Closeup of the diffraction pattern shown in

of Python code

of Figure 1 with the spotfinder results (red), integration

(rstbx/viewer/spotfinder_frame.py), ~ most masks (cyan), and background masks (yellow) overlaid.

which implements the additional controls and
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Figure 3: The spotfinder front end, distl.image_viewer.

event handling.

Future directions

We extensively use this module as a development
aid. An NIH-funded project, “Realizing New
Horizons in X-ray Crystallography Data
Processing”, is focused on problems in diffraction
image processing that can not be handled
automatically (or at all) by current software, such
as split or multiple lattices (Sauter & Poon, 2010),
severe  anisotropy, and other common
pathologies. Although the eventual goal is a suite
of programs that can be run unattended (either
graphically or from the command line),
interactive, real-time visualization of the results
will be continue to be essential, especially for the
early stages of development. As the program
framework is relatively simple and easily
extended, we anticipate that it could also be
adapted to monitoring live beamline data with
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minimal effort.

In the long term, we hope to integrate this tool
with others developed by the CCI group, including
alternative methods for displaying raw diffraction
data (Sauter, 2011), visualization of reciprocal
space (Echols & Adams, 2011), and analysis of
processed data quality (Zwart et al., 2005).

Availability

All code described here is open-source under the
CCTBX license, and may be downloaded from
http://cctbx.sfnet. The CCTBX builds do not
include the required graphical libraries, so
additional installation of wxPython (version
2.8.12.1 or newer) and Matplotlib (1.0.1 or newer)
is necessary. (These are included in the PHENIX
installers.)
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