ARTICLES

Deploying cctbx.xfel in Cloud Computing and High Performance

Computing Environments

Billy K. Poon, Aaron S. Brewster and Nicholas K. Sauter

Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National

Laboratory, Berkeley, CA 94720, USA

Introduction:

The amount of data being generated by protein
X-ray crystallography beamlines at photon light
sources is growing dramatically, with data sets
at the newest X-ray free electron laser (XFEL)
facilities currently requiring tens to over a
hundred terabytes (TB) for a single serial
femtosecond nanocrystallography experiment.
This is due to advances in the underlying
accelerator technology that can generate more
photons more quickly [1], as well as
improvements in detectors that allow for more
rapid data collection [2]. However, storage
technology is not projected to increase at a
comparable rate [3]. As a result, in addition to
experiments conducted at XFEL facilities,
average photon light source users performing
crystallography experiments will begin to
encounter “Big Data” problems with storing
and processing their data in the near future as
raw dataset sizes begin to outstrip what users
can reasonably purchase and manage on
personal computers and small computing
clusters.

For traditional protein crystallography, the size
of the raw data set is defined by the number of
pixels in the detector as well as how many
images were collected. Generally, each crystal
generates a data set that is several hundred
megabytes. With increased brightness at
synchrotrons and improved detectors, it is
possible at some beamlines to collect the data
continuously. That is, instead of stopping at
each angular increment for 1 second, the

Computational Crystallography Newsletter (2017). 8, 10-19

crystal is rotated continuously and data is
collected continuously [4]. Furthermore,
with improved robotic sample handling
systems [5], it is possible for users to quickly
mount and collect many crystals during their
beamtime. As a result, while data sets for
individual crystals have grown modestly in
size due to higher detector pixel counts, the
number of data sets that can be collected
during a user’s scheduled beam time has
increased significantly, resulting in much
more data that needs to be processed and
analyzed.

But the real dramatic growth in data sizes
will be from serial femtosecond
nanocrystallography experiments conducted
at XFEL facilities [6]. The experimental setup
is similar to protein
crystallography, but the sample is not
mounted or rotated. Instead, a steady stream
of nanocrystals is shot in the path of the X-
ray beam with each nanocrystal that
interacts with the beam resulting in a hit.
Several million images are collected, but
only a fraction of those images are hits with
nanocrystals. Even with better hit-detection
algorithms that discard non-hits, several
hundred thousand images still need to be
stored and processed to produce a data set
suitable for structure refinement.

traditional

To explore the capabilities of cloud
computing and high performance computing
(HPC) environments to handle these larger

and more numerous datasets, the data

10

ARTICLES I

processing software package cctbx.xfel [7] was
configured to run on Amazon Web Services
(AWS) and on Edison, a supercomputer at the
National Energy = Research Scientific
Computing Center (NERSC). A 15.5 TB partial
dataset collected from the Linac Coherent
Light (LCLS)
benchmarking the performance of indexing

Source was used for

and spotfinding in parallel.

Amazon Web Services:

Amazon Web Services (AWS) provides
infrastructure as a service (IaaS) by giving
users the ability to store data and run
customized virtual machines in Amazon’s data
centers. Amazon’s services are well
established and Amazon provides numerous
case studies about the effectiveness and cost-
savings achieved by companies using the
cloud instead of having to manage physical

servers [8]. Amazon’s servers are divided into

separate geographic regions and each
geographic region is independent of the
others. That is, workloads are not

automatically distributed across geographic
regions by Amazon. For this test, we will be
focusing on a subset of Amazon’s offerings:
Elastic Compute Cloud (EC2Z) and Simple
Storage Service (S3).

The EC2 service [9] is the basic compute
resource provided by Amazon. There are
multiple hardware configurations available
and the number of instances of each
configuration can be dynamically changed to
meet the computational demand of the
solved. The
capabilities of the hardware configurations
Intel
processors where each physical computing
handle threads (i.e.

hyperthreading) and each thread corresponds

problem being computing

are based on more recent Xeon

core can two

to one vCPU unit. The pricing scales with the

Computational Crystallography Newsletter (2017). 8, 10-19

amount of hardware resources (number of
vCPUs and memory) in the configuration and
the charge is usually for every hour an
instance is running. The pricing can be
reduced by using reserved instances where an
upfront cost is paid, but the hourly cost is
lower. Another way to reduce costs is to use
spot instances where Amazon offers excess
capacity at a lower price that fluctuates
depending on demand. The downside to using
spot instances is that AWS will reclaim the
instance if the price goes higher than the
maximum price you are willing to pay per
hour (i.e. the bid price).

Amazon has configurations specific for
computationally intensive workloads. These
cluster compute instances have larger
amounts of memory; solid state drives (SSD)
for local storage; computing power; and 10
Gigabit network speeds. There are also
instances that have graphics processing units
(GPU) for computation. As of January 2017,
the on-demand price per vCPU hour is
$0.0525 for the c3.8xlarge configuration (32
vCPUs), but can be around $0.011 per vCPU
hour if spot pricing is used. For this test, we
had no issues with getting 64 c3.8xlarge spot
instances within 5 minutes and keeping the
spot instances for the duration of the tests
with a bid price of $1.00 per c3.8xlarge
instance hour. The limit was self-imposed for
controlling cost, not from some limit imposed

by AWS.

The S3 service [10] is the basic data storage
resource provided by Amazon. Data are
stored as web objects instead of files in a
traditional filesystem. The user creates a
bucket in a geographic region, and data are
stored as objects in the bucket. The S3 service
will be used for storing the large data sets
because objects have a size limit of five

11

ARTICLES I

Fri 01 Jan 2016 01:00 AM - Sat 02 Jan 2016 02:00 PM

Total traffic

03 AM 06 AM 09 AM 12PM 03 PM 06 PM

M Tosite [From site

F 6.0G6
- 5.0G
- 4.0G
- 3.0G

I [N | . L 129G

W Bl 1.0G6
0.0

- 1.0G
-2.0G
-3.0G6
- 4.0G
- 5.0G6
L 6.0G

09 PM Sat 02 03 AM 06 AM 09 AM 12PM

Figure 1: Data transfer rates from LCLS to S3 according to https://my.es.net. The transfer
started at around 12 pm on January 1, 2016 and ended around 7 am the next day. The orange

graph shows the traffic leaving LCLS to S3.

terabytes, but there is no limit to the number
of objects that can be stored. The cost is based
on the amount of storage used, the amount of
data transferred out and the number of
requests made for accessing the data. The cost
will be dominated by the amount of data
stored and, as of January 2017, the price per
gigabyte per month is $0.023. According to
Amazon, objects stored in S3 have a durability
of 99.999999999% and an availability of
99.99%. The durability is especially important
for large data sets because it protects the data
against corruption from random events that
may flip a bit. During this test, the price per
gigabyte per month was $0.03, so to store all
the data in S3, the monthly cost was around
$475. With the more recent pricing, the
monthly cost for 15.5 TB drops to around
$364. The results that are stored in S3 only
take a few gigabytes, so they do not
appreciably change the monthly cost of S3
storage.

The first step for this benchmark is to transfer
the 15.5 TB dataset to S3. We chose the us-
west-2 region, which is located in Oregon, due
to server capacity and the 100 Gbit/s peering
between AWS and ESnet [11], the Department
of Energy-funded high-speed network used
for research. The peering enables a more

Computational Crystallography Newsletter (2017). 8, 10-19

direct connection between computers on
ESnet (e.g. photon light sources, national
laboratories, NERSC) and AWS systems.
Figure 1 shows the speed of the transfer over
time. Starting at around 12 pm on January 1,
2016, it took approximately 18 hours to
transfer 15.5 TB (peak speed ~ 6.0 Gbit/s,
average speed ~ 2.0 Gbit/s). The dataset was
broken up into 3,303 files of about 5 GB each.
The AWS command-line tools were used to
copy these files from 2 data transfer nodes
(DTN) at LCLS directly into S3. Each DTN has
a 10 Gbit/s connection to ESnet. Working with
the networking staff at LCLS and a solutions
architect from AWS, we determined that the
maximum transfer rate per DTN is roughly 3.2
Gbit/s, which matches the peak speed for the
data transfer. We also speculated that the
shared nature of the LCLS filesystem and
DTNs might have lowered the average speed
from the maximum.

The second step for this benchmark is to
process the data. To do so, we built an
Amazon Linux image containing the PSDM
software [12] for handling LCLS files and
cctbx.xfel for analysis. The Open Grid Engine
[13] was used for managing the jobs on a
cluster of EC2 instances. Table 1 lists the EC2
configurations used for testing. For the

12

ARTICLES I

Table 1: EC2 configurations and average costs

Instance CPU # Speed RAM SSD Instance Cost
Type vCPU (GHz) (GB) (GB) ($/h)
c3.8xlarge E5-2680v2 32 2.8 60 2x320 0.387
c4.8xlarge E5-2666v3 36 2.4 60 N/A 0.514
m4.10xlarge E5-2676v3 40 2.6 160 N/A 0.426

c4.8xlarge and m4.10xlarge, the Elastic Block
Store (EBS) service was used to create 12 GB
volumes that can be mounted individually on
each node for storing the operating system. As
of January 2017, the cost for this service is
$0.10 per GB-month. Since we only use the
volume when an instance is running, the cost
per node for 12 GB of storage is
approximately $0.00164 per hour. Table 1
also shows the average cost per hour for each
instance type based on the actual costs for
these tests when using spot instances. For
c4.8xlarge and m4.10xlarge, the cost of the
EBS volume is included. Using these average
costs and the time needed to process 15.5 TB,
the EC2 cost of processing the whole dataset
is shown in Table 2. However, the cost of S3 is
not included in the EC2Z costs reported in
Table 2 because the entire dataset is held in
S3 regardless of any processing. The S3 costs
should be tracked separately.

On AWS, the S3 bucket where all the data are
stored operates independently from the EC2
instances. So to do the actual processing, we
wrapped the normal cctbx.xfel analysis with a
script that would manage the transfer of data
files from S3 onto the EC2 instance and the
transfer of results from the EC2 instance back
to S3. However, because the analysis is known
to be compute-bound, we only have, at most,
two data files on each EC2 instance at any
given time: the file currently being processed
and the next file to be processed (transferred
simultaneously with the processing of the

Computational Crystallography Newsletter (2017). 8, 10-19

current file). We found through some initial
testing that the transfer of one data file (5 GB)
from S3 to one of the instance types listed in
Table 1 took around 30 s (~ 1.33 Gbit/s).
After a node finishes processing its list of files,
the results are compressed and transferred
back to S3. Because the number of indexable
images varies according to which data files
are processed, the amount of results varied by
node. But this final transfer of results usually
took a few minutes and is a small fraction of
the total processing time. Lastly, for speed, all
the data files and results are cached in RAM.

Figure 2 and Table 2 show the data processing
speeds, wall times and EC2 costs for the
instance types in Table 1 for different
numbers of nodes. It is important to note that
the EC2 costs are averaged over a few months
and can be higher or lower depending on the
current spot market price. Our experience
during these tests showed spot pricing that
could vary by at most +/- 25%. Also, the cost
for each test is relatively independent of the
number of nodes because the total number of
core hours needed for processing is about the
same and the scaling is linear. Some initial
processing was performed on all 3,303 files to
get a sense of how long each file took to
process. The files were distributed in such a
way that all the nodes would finish at
approximately the same time. As a result, the
standard deviations for the average time per
node are 1% or smaller.

13

ARTICLES I

2
1.8 /;
1.6
g
1.4 /
S 12
= =
£ 1
: =
Z o8 .
0.6 &c3.8xlarge —
0.4 2/ Hc4.8xlarge —
Q/_,
0.2 m4.10xlarge —
0 |
0 500 1000 1500 2000 2500 3000
vCPU

Figure 2: Processing speeds

Edison @ NERSC:
Edison is a Cray XC30 with over 5,500 nodes
and 134,000 cores. Edison behaves like a
traditional computing cluster with mounted
filesystems and a queuing system, but on a
much larger scale.

Similar to AWS, the first step is to transfer the
dataset to Edison. Using Globus [14], a file
transfer management tool, the 3,303 files
were transferred from LCLS to the scratch
space on Edison in about 10 hours (average

speed ~ 3.7 Gbit/s). Like the AWS transfer,
Globus can use multiple DTNs at each
endpoint, but Globus hides all of the
complexities from the user. Also like the AWS
test, the PSDM and cctbx.xfel software need to
be installed and configured. On Edison, the
recommended approach for installing custom
software is to use containers. NERSC uses
Shifter [15], which is compatible with the
widely used Docker container format [16].
Containers are basically virtual machine
images packaged into layers so that common

Table 2: Processing times, speeds and EC2 costs for processing 15.5 TB once through.

Instance Type Nodes Average Time (s) o (s) Rate (TB/h) EC2 Cost ($)

16 189,439
c3.8xlarge 32 94,709
64 47,390
16 128,713
c4.8xlarge 32 64,399
64 32,267
16 147,376
m4.10xlarge 32 73,683
64 36,889

387 0.294 325.76
242 0.587 325.72
168 1.17 325.97
482 0.432 278.89
367 0.864 278.87
264 1.72 279.24
646 0.378 293.84
585 0.755 294.04
397 1.51 294.65

Computational Crystallography Newsletter (2017). 8, 10-19

14

ARTICLES I

parts (e.g. base operating system) are not
replicated for each container. In our case, we
use CentOS 6.8 as the base operating system
and build PSDM and cctbx.xfel on top of that.
Schema 3 shows the file used to build the
Docker container, subsequently
transferred to Edison. The actual Docker

which is

container can be found in the public Docker
repository (hub.docker.com/r/bkpoon/cctbx/tags)
under the “aws_test” tag.

Due to time constraints, only one test was
performed using 8 nodes (192 physical cores).
The 15.5 TB dataset was processed in about
two days resulting in a data processing rate of
about 0.328 TB/h. The processors in Edison
(E5-2695 v2 @ 2.4 GHz) are comparable to
the ones in a c3.8xlarge instance (E5-2680 v2
@ 2.8 GHz), but have more physical CPUs per
node (12 vs. 8). So even though the closest
AWS test used twice as many c3.8xlarge nodes
as Edison nodes (16 vs. 8), the AWS test only
had about 1/3 more physical cores.

Conclusions and Future Directions:

From these tests, it is possible to effectively
run cctbx.xfel in cloud computing and HPC
environments for production use. On AWS,
the performance of independently indexing
and spotfinding each diffraction image scales
linearly. We speculate that to be true on
Edison as well because the application is
compute-bound as opposed to I/0-bound and
is embarrassingly parallel. That is, the
processors are never sitting idle since each
core will always have another image queued
for analysis. Moreover, we think that the
scaling on AWS should extend into multiple
thousands of physical cores due to how S3
scales I/0 throughput by following the
recommended file naming conventions for S3
(i.e. prefixing each file with a random hash)
and distributing files across multiple buckets.

Computational Crystallography Newsletter (2017). 8, 10-19

On Edison, the same should be true because
the scratch filesystem can provide more than
700 GB/s of throughput. This linear scaling is
especially crucial for handling the increased
detector sizes and data collection rates.

For this particular test dataset, the files were
constructed in a way so that they were all
approximately 5 GB. This made distributing
images to the compute nodes much easier and
uniform, especially on AWS. However, this is
generally not true for files from LCLS. But
with additional software engineering, it would
be possible to read blocks of images from any
file and distribute the blocks to the compute
nodes.

In terms of data transfer, Globus made the
process very simple and fast between LCLS
and NERSC. Using the AWS command-line
tools for transferring to S3 was not as easy
and required more expertise for setting up the
transfer across 2 DTNs. We did create a
Globus endpoint for the S3 bucket and we
tried to use Globus to manage the transfer to
S3, but the transfer rate was less than 1.0
Gbit/s. Preliminary attempts to improve the
transfer rate were inconclusive, however, it is
thought that this is an area that can be
improved and is important for making cloud
computing more accessible to researchers
who have large datasets.

the Docker
container greatly simplifies the process.
During the AWS test, the Amazon EC2

Container Service was still in beta so a full

For software deployment,

virtual image was built instead. However, if
the AWS tests were to be repeated today, we
would use the same Docker container as was
used on Edison after conversion into the
Shifter format. This ability to use the same
container for both AWS and NERSC makes

15

ARTICLES

FROM centos:6.8
MAINTAINER "Billy Poon" bkpoon@lbl.gov
ENV container docker

arguments

ARG NCPU=4

software versions

ENV PSDM VER 0.15.5

ENV CCTBX_SRC xfel 20151230.tar.xz

upgrade OS and install base packages for psdm

https://confluence.slac.stanford.edu/display/PSDM/System+packages+for+rhel6

RUN yum update -y && \
yum -y install alsa-lib atk compat-1libf2c-34 fontconfig freetype gsl \
libgfortran libgomp libjpeg libpng libpng-devel pango postgresql-libs \
unixODBC 1libICE 1ibSM 1ibX11l libXext libXft libXinerama libXpm \
libXrender libXtst libXxf86vm mesa-1ibGL mesa-1ibGLU gtk2 \
xorg-x1ll-fonts-Typel xorg-xll-fonts-base xorg-xll-fonts-100dpi \
xorg-xll-fonts-truetype xorg-xll-fonts-75dpi xorg-xll-fonts-misc \
tar xz which gcc gcc-c++ mysql libibverbs openssh-server openssh \
gcc-gfortran

install psdm

https://confluence.slac.stanford.edu/display/PSDM/Software+Distribution

ADD http://pswww.slac.stanford.edu/psdm-repo/dist_scripts/site-setup.sh \
/reg/g/psdm/

RUN sh /reg/g/psdm/site-setup.sh /reg/g/psdm

ENV SIT ROOT=/reg/g/psdm

ENV PATH=/reg/g/psdm/sw/dist/apt-rpm/rhel6-x86_ 64/bin: $PATH

ENV APT_CONFIG=/reg/g/psdm/sw/dist/apt-rpm/rhel6-x86 64/etc/apt/apt.conf

RUN apt-get -y update && \
apt-get -y install psdm-release-ana-${PSDM VER}-x86_ 64-rhel6-gcc44-opt && \
1n -s /reg/g/psdm/sw/releases/ana-${PSDM_VER} \

/reg/g/psdm/sw/releases/ana-current

use old HDF5 (1.8.6) for compatibility with cctbx.xfel
ADD https://www.hdfgroup.org/ftp/HDF5/releases/hdf5-1.8.6/bin/linux-x86_64/hdf5-1.8.6-
linux-x86_64-shared.tar.gz
#COPY ./hdf5-1.8.6-1inux-x86_64-shared.tar.gz
RUN tar -xf hdf5-1.8.6-1linux-x86_64-shared.tar.gz &&\
mkdir -p /reg/g/psdm/sw/external/hdf5/1.8.6 &&\
mv hdf5-1.8.6-1inux-x86_64-shared \
/reg/g/psdm/sw/external/hdf5/1.8.6/x86_64-rhel6-gcc44-opt

Install mpich for NERSC
https://github.com/NERSC/shifter/blob/master/doc/mpi/mpich_abi.rst
WORKDIR /usr/local/src
ADD http://www.mpich.org/static/downloads/3.2/mpich-3.2.tar.gz /usr/local/src/
RUN tar xf mpich-3.2.tar.gz && \
cd mpich-3.2 && \
./configure && \
make -j ${NCPU} && make install && \
cd /usr/local/src && \
rm -rf mpich-3.2

build myrelease

WORKDIR /reg/g

RUN source /reg/g/psdm/etc/ana_env.sh &&\
newrel ana-${PSDM VER} myrelease &&\
cd myrelease &&\
source sit_setup.sh &&\
newpkg my_ana_pkg

Schema 3: Dockerfile for building container for Edison. The most recent version can be found at
https://github.com/bkpoon/cctbx_docker

Computational Crystallography Newsletter (2017). 8, 10-19 16

ARTICLES

copy cctbx.xfel from local tarball

RUN mkdir -p /reg/g/cctbx

WORKDIR /reg/g/cctbx

COPY ./${CCTBX SRC} /reg/g/cctbx/${CCTBX SRC}
RUN tar -Jxf ./${CCTBX_SRC}

build cctbx.xfel

make needs to be run multiple times to ensure complete build (bug)

ENV CPATH=/reg/g/psdm/sw/releases/ana-${PSDM VER}/arch/x86 64-rhel6-gcc44-opt/geninc
#:/reg/g/psdm/sw/releases/ana-${PSDM_VER}/arch/x86_ 64-rhel6-gcc44-opt/geninc/hdf5
ENV LD LIBRARY PATH=/reg/g/psdm/sw/releases/ana-${PSDM_VER}/arch/x86 64-rhel6-gcc44-

opt/1lib

RUN source /reg/g/psdm/etc/ana_env.sh &&\
cd /reg/g/myrelease &&\
sit setup.sh &&\
cd /reg/g/cctbx &&\

python ./modules/cctbx _project/libtbx/auto build/bootstrap.py build \
--builder=xfel --with-python="which python~ --nproc=${NCPU} &&\

cd build &&\
make -j ${NCPU} &&\
make -j ${NCPU}

finish building myrelease

RUN source /reg/g/psdm/etc/ana_env.sh &&\
cd /reg/g/myrelease &&\
source /reg/g/psdm/bin/sit_setup.sh &&\
source /reg/g/cctbx/build/setpaths.sh &&\
cd my_ana_pkg &&\

1n -s /reg/g/cctbx/modules/cctbx_project/xfel/cxi/cspad_ana src &&\

cd ..
scons

&&\

recreate /reg/d directories for data
RUN mkdir -p /reg/d/psdm/cxi &&\
mkdir -p /reg/d/psdm/CXI

Schema 3: Dockerfile for building container for Edison. The most recent version can be found at
https://github.com/bkpoon/cctbx_docker (continued)

running the software on a large-scale much
easier. Moreover, Docker containers can run
on macOS, Windows and Linux,
software

So one
in a container can
behave consistently on multiple platforms at
multiple scales.

installation

An additional benefit of containers is that the
software becomes independent of the host
operating system. This can avoid installation
issues where the host operating system might
not have the required libraries for running the
software. One recent example where this is
the refinement
program Phenix and it's interaction with the
modeling program Rosetta. The newest

true involves structure

Computational Crystallography Newsletter (2017). 8, 10-19

versions of Rosetta require that the compiler
supports C++11, but Phenix does not. So in
order to run phenix.rosetta_refine, users
would need to upgrade their compiler or
operating system (to get a newer compiler
version) if C++11 support is not available. A
container solves this issue by letting the user
choose the base operating system that has the
required features. . In this test, we chose
CentOS 6.8 because it is a supported operating
system for PSDM. But the version of gcc that
comes with CentOS 6.8 does not support
C++11. If we were to build a container for
Phenix and Rosetta, we could easily modify
the Dockerfile to use the latest version CentOS

17

ARTICLES I

7, which does have C++11 support. And after
the container is built, we could run Phenix
and Rosetta on any operating system
regardless of C++11 support, as long as it can
run Docker. This can be an important feature
for users who run their jobs on production
servers maintained by other people or who
cannot easily upgrade their operating
systems.

Acknowledgements:

The authors would like to thank AWS (Kevin
Jorissen, Dave Cuthbert, Jamie Baker, Cindy
Hewitt, Jamie Kinney) for providing the funds
(EDU_R_FY2015_Q2_LawrenceBerkeleyNation
alLaboratory_Poon) for running these large-
scale jobs. We would like to give a special
thanks to Dave Cuthbert for helping with
troubleshooting various issues on AWS.

We would also like to thank Duilio Cascio for
providing the test dataset and the following

References:

people grouped by their organizations and
key area of assistance:

* LCLS (troubleshooting) - Amedeo Perazzo,
Chris O’Grady, Igor Gaponenko and Antonio
Ceseracciu

* LBNL (Globus endpoint on S3) - Craig Tull,
Shreyas Cholia, Krishna Muriki

* NERSC (Shifter container) - David Skinner,
Deborah Bard, Joaquin Correa, Doug Jacobsen

* ESnet (data transfer) - Eli Dart, Mike Sinatra

* Globus (data transfer) - Rachana
Ananthakrishnan

N.K.S. acknowledges National Institutes of
Health grant GM117126 for data processing
methods. Use of the LCLS at SLAC National
Accelerator Laboratory, is supported by the
US Department of Energy, Office of Science
and Office of Basic Energy Sciences under
contract no. DE-AC02-76SF00515. This
research used resources of NERSC, a User
Facility supported by the Office of Science,
DOE, under Contract No. DE-ACO02-
05CH11231.

1. Emma, P, Akre, R, Arthur,], et al. First lasing and operation of an Angstrém-wavelength
free-electron laser. Nature Photonics, 2010; 4: 641-647.

2. Struder, L, Epp, S, Rolles, D, et al. Large-format, high-speed, X-ray pnCCDs combined with
electron and ion imaging spectrometers in a multipurpose chamber for experiments at
4th generation light sources. Nucl. Instrum. Methods Phys. Res. A, 2010; 614: 483-496.

3. National Energy Research Scientific Computing Center (NERSC) Strategic Plan for
FY2014-2023, 2013. (http://www.nersc.gov/assets/pubs_presos/NERSCplan-FY2014-

2023.pdf)

4. Hasegawa, K, Hirata, K, Shimizu, T, et al. Development of a shutterless continuous
rotation method using an X-ray CMOS detector for protein crystallography. J. Appl. Cryst,,

2009; 42: 1165-1175.

5. Snell, G, Cork, C, Nordmeyer, R, et al. Automated sample mounting and alignment system
for biological crystallography at a synchrotron source. Structure, 2004; 12(4): 537-545.

6. Boutet, S, Lomb, L, Williams, GJ, et al. High-resolution protein structure determination by
serial femtosecond crystallography. Science, 2012; 337: 362-364.

7. Hattne,], Echols, N, Tran, R, et al. Accurate macromolecular structures using minimal
measurements from X-ray free-electron lasers. Nature Methods, 2014; 11: 545-548

8. AWS Case Studies (http://aws.amazon.com/solutions/case-studies/)

9. AWS EC2 (http://aws.amazon.com/ec2/)

10. AWS S3 (http://aws.amazon.com/s3/)
11. ESnet (http://es.net/)

Computational Crystallography Newsletter (2017). 8, 10-19

18

ARTICLES I
12. PSDM Software Distribution

(https://confluence.slac.stanford.edu/display/PSDM/Software+Distribution)
13. Open Grid Engine (http://gridscheduler.sourceforge.net)
14. Globus (https://www.globus.org)
15. Shifter (https://www.nersc.gov/research-and-development/user-defined-images/)
16. Docker (https://www.docker.com)

Computational Crystallography Newsletter (2017). 8, 10-19 19

	CCN_2017_01

