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X-ray diffraction patterns from still crystals are inherently

difficult to process because the crystal orientation is not

uniquely determined by measuring the Bragg spot positions.

Only one of the three rotational degrees of freedom is directly

coupled to spot positions; the other two rotations move Bragg

spots in and out of the reflecting condition but do not change

the direction of the diffracted rays. This hinders the ability

to recover accurate structure factors from experiments that

are dependent on single-shot exposures, such as femtosecond

diffract-and-destroy protocols at X-ray free-electron lasers

(XFELs). Here, additional methods are introduced to

optimally model the diffraction. The best orientation is

obtained by requiring, for the brightest observed spots, that

each reciprocal-lattice point be placed into the exact reflecting

condition implied by Bragg’s law with a minimal rotation. This

approach reduces the experimental uncertainties in noisy

XFEL data, improving the crystallographic R factors and

sharpening anomalous differences that are near the level of

the noise.
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1. Introduction

Recent high-resolution crystallographic structure determina-

tions at X-ray free-electron lasers have required 104–105 still

shots to achieve adequate signal to noise (Boutet et al., 2012;

Redecke et al., 2013; Barends et al., 2013; Liu et al., 2013), thus

placing severe demands on the limited amounts of available

sample and instrument time. A critical question that has yet to

be answered is whether systematic improvements in the way

that the data are treated would lessen these requirements. The

hope is that a more accurate model of the experiment will help

to identify the specific pixels in the diffraction image that

contain Bragg signal rather than background or noise, leading

to better structure-factor estimates from fewer images. In a

previous paper (Hattne et al., 2014), we raised the issue of

whether the shape of Bragg spots can be precisely modeled on

either empirical grounds or by considering crystal mosaicity

and spectral dispersion. Here, we probe a similarly funda-

mental issue: is the set of Bragg spots predicted by the model

an exact match to the set of Bragg spots actually recorded, or

is there a slight mismatch that gives either falsely predicted

spots or true signals that are not modeled (Fig. 1a)?

The idea of a mismatch between predicted and observed

Bragg spots is a well understood consequence of having only a

single still shot from which to deduce the crystal orientation.

Generally speaking, the positions of the brightest Bragg spots

are used by an indexing algorithm (Steller et al., 1997; Sauter et

al., 2004) to produce an approximate orientation. Numerical

optimization is then used to refine the model (Paciorek et al.,

1999), for example with a least-squares target function,

electronic reprint



F ¼ P
spots

ðrobs � rcalcÞ2; ð1Þ

that seeks to minimize the squared-distance residual between

measured spot centroid positions, robs, and those calculated

from the model, rcalc. Model parameters that need to be

optimized are the unit-cell lengths and angles, as well as the

three orthogonal misorientation angles Rx, Ry and Rz. On a

still shot, unfortunately, only one of these misorientation

angles has an explicit effect on rcalc, namely the rotation Rz

around the beam axis (Fig. 1b) that turns both the crystal and

the resulting diffraction pattern in lockstep. The orthogonal

misorientations Rx and Ry do not change the calculated spot

centroids rcalc; rather, these rotations move new Bragg spots

into reflecting positions. As a consequence, the intersecting set

of spots that are both observed and modeled is reduced in size.

Synchrotron-based experiments do not face this limitation,

since the goniometer mount permits crystals to be exposed in

several orientations with exactly known relationships, thus

coupling all three misorientation angles to the calculated spot

positions from two or more exposures (Sauter et al., 2004,

2006).

To assess whether the inability to refine the Rx and Ry

misorientation angles has practical implications for XFEL

data, we measured the success rate for refining the orienta-

tions of simulated still-shot diffraction patterns for photo-

system I (PSI). Test conditions represented the simplest

possible case, with idealized monochromatic radiation from

a constant-flux, zero-divergence source illuminating zero-

mosaicity crystals with a known size and orientation. Indeed,

we find that the straightforward

approach of applying the target function

(1) for the refinement of six unit-cell

and three rotational parameters

diverges from the known solution in a

considerable fraction of cases (see x3).

We therefore tested additional methods

to produce a closer match to the true

orientation.

A second problem arising with still

shots is that model centroids do not

exactly meet the reflecting conditions to

infinite precision (Fig. 2); instead, we

assume that the experiment has some

imperfections allowing Bragg spots to

be observed slightly off-condition. For

synchrotron experiments this has been

research papers

3300 Sauter et al. � Single-shot XFEL stills Acta Cryst. (2014). D70, 3299–3309

Figure 1
Relation between the observation and prediction of Bragg spots. (a) The aim of data processing is
to exactly predict the Bragg spots that are actually recorded. (b) Definition of the laboratory
coordinate system, with incident X-rays traveling in the �z direction and rotations Rx, Ry and Rz

along the three principal axes. Only the rotation Rz has a direct effect on Bragg spot positions.

Figure 2
The relationship between mosaicity and mosaic block size. Ewald sphere diagram identifying the reciprocal-lattice points (gold) actually observed in the
diffraction pattern. A goal of modeling is to adjust the effective mosaicity (a) and effective mosaic domain size (b) together so as to bring all the observed
points into contact with the sphere of reflection of radius 1/� (where � is the wavelength), but not the unobserved (blue) points. (a) Mutual rotation of
mosaic blocks spreads the points into concentric arcs (spherical caps in three dimensions) subtending a constant angle � at the reciprocal-lattice origin O,
with � interpreted as the full-width effective mosaicity. A lattice point diffracts if its centroid (midpoint) can be brought onto the sphere of reflection with
a rotation � � �/2. (b) Expansion of the reciprocal-lattice points into constant-sized spheres, reflecting the finite size of mosaic blocks (Nave, 1998) or,
equivalently, the domain-size broadening (Scherrer, 1918). The sphere diameter � is inversely proportional to the effective mosaic block size Deff. The
sphere size illustrated in (b) falls short of that needed to completely model the observed reflections.
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successfully modeled as a parameter describing the effective

mosaicity (Winkler et al., 1979; Rossmann et al., 1979; Bolo-

tovsky & Coppens, 1997), a composite parameter that

encompasses the effects of beam divergence, mutual rotation

of mosaic blocks (illustrated in Fig. 2a) and block-to-block

differences in unit-cell parameters. These effects scale in direct

proportion to the diffraction angle (Nave, 1998; Juers et al.,

2007) and are thus useful for modeling the high-resolution

reflections (Fig. 2a). However, they account for vanishingly

few Bragg spots in the low-resolution limit. In our experience

with XFEL still shots taken at the CXI instrument at LCLS

(Kern et al., 2012, 2013; Hattne et al., 2014), we observe

numerous low-angle spots that cannot be modeled by effective

mosaicity. Specifically, if we increase the mosaicity value to

predict all the low-resolution spots that are actually observed,

then the model predicts far too many high-resolution spots.

This problem can be solved by complementing the model with

a term describing the mosaic block size (Fig. 2b; Nave, 1998,

2014; Juers et al., 2007; Battye et al., 2011). We investigate here

how to optimally adjust these two effects so as to model both

the high-resolution and low-resolution reflections.

In the present study, we make the approximation of treating

diffraction as arising from monochromatic X-rays (see x4), as

this provides a reasonable starting point for still images.

2. Methods

2.1. Additional restraints for orientational refinement

To prevent divergence while numerically optimizing the

crystal orientation from still shots, we have followed the

example of other authors (Jones et al., 1977, Kabsch, 2014) by

introducing an additional restraint that keeps model spots as

close to the diffracting condition as possible (Fig. 2). For each

observed Bragg spot, we define � calc as the magnitude of the

rotation that most directly brings the modeled spot centroid

from an approximate to an exact diffraction condition (Fig. 3).

The model is then optimized using the new least-squares

minimization target

G ¼ P
spots

½ðrobs � rcalcÞ2 þ ð� calcÞ2�: ð2Þ

In the hybrid target (2), rcalc has a direct dependence on Rz,

while � calc depends on Rx and Ry; therefore, all three

misorientation angles can be properly optimized. It is impor-

tant to note the distinction between � calc and the similar

angle �’ used in synchrotron experiments, which represents

the difference in goniometer rotation angle ’ between the

observed and modeled spot centroids. The still shots discussed

here do not employ a goniometer spindle, so instead of

bringing the reciprocal-lattice point into a reflecting condition

by an angular rotation �’ around a physical spindle, we

simply construct a rotation axis (different for each Bragg spot;

Fig. 3) that brings the model centroid into the reflection

condition with the smallest possible angle � calc.

For (2) we evaluate robs � rcalc in units of millimetres and

� calc in units of radians/(2�). Thus, both terms are weighted

roughly equally (within an order of magnitude) and both are

numerically on a convenient scale (below 1) for Gauss–

Newton nonlinear least-squares minimization as implemented

within the Computational Crystallography Toolbox (cctbx;

Grosse-Kunstleve et al., 2002). We note that other authors

have used relative weighting schemes using inverse-variance

factors (Kabsch, 2014).

To find the optimal model, the target expression (2) is recast

in terms of fundamental experimental quantities including the

beam direction ŝs0, the wavelength �, the crystal orientation

and the unit-cell parameters. The parameter dependence of

the robs � rcalc term has been described elsewhere (Paciorek

et al., 1999); here, we focus on the quantity � calc(h) that

corresponds to a reciprocal-lattice point

with Miller index h (hereafter referred

to as � ). The reflection h arises from a

crystal with reciprocal-space orientation

matrix A as defined previously (Ross-

mann et al., 1979),

A ¼
a�x b�

x c�x
a�y b�

y c�y
a�z b�

z c�z

0
@

1
A: ð3Þ

The matrix elements of (3) are the

projections of the reciprocal-space unit-

cell vectors a*, b* and c* onto the

laboratory axes x, y and z. As we use a

vectorial approach it is not strictly

important how the orthonormal

laboratory axes are chosen, but Fig. 1(b)

gives one possible convention. The

reciprocal-space coordinates (labora-

tory frame) of the reflection are

q ¼ Ah: ð4Þ
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Figure 3
The construction of � . As stated in the text, the sign of the rotation � bringing Q onto the
Ewald sphere is considered to be negative if Q is outside the sphere (as shown) or positive if it is
inside.
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The paradigm for calculating � is shown in Fig. 3, depicting

reciprocal space with origin O, the Ewald sphere of radius 1/�
centered at E and the reciprocal-lattice point R on the Ewald

sphere surface meeting the reflecting conditions described by

Bragg’s law, giving rise to the diffracted ray ER
�!

= EO
�!

+ OR
�!

,

or s1 = s0 + r in conventional notation. However, the current

model for the lattice point (4) predicts not the position R (= r)

but a position Q (= q) that is slightly off the Ewald sphere. The

angle � is defined as the rotation needed to bring point Q

onto R and thus into the exact diffracting condition. This

rotation is around a unit vector êe1 perpendicular to plane

EOQ and pointing into the page. We find it useful to define

� as a signed quantity: negative if Q is outside the Ewald

sphere (as shown) and positive if it is inside the sphere.

By first defining q̂q0 as the unit-length vector along q,

q̂q0 ¼
q

q
; ð5Þ

we can then define the orthonormal vectors

êe1 ¼ q̂q0 � ŝs0; ð6Þ
and

ĉc0 ¼ ŝs0 � êe1; ð7Þ
which allows us to write a vector expression for R,

r ¼ �aŝs0 þ bĉc0; ð8Þ
with positive quantities a and b obtained by solving the right

triangles of Fig. 3:

a ¼ q2�

2
; ð9Þ

b ¼ ðq2 � a2Þ1=2: ð10Þ
The desired angle � between q and r can now be calculated

via the tan�1() function. As an aid for visualizing this, we

define the orthonormal vectors q̂q0 and

q̂q1 ¼ q̂q0 � êe1: ð11Þ
We then express � in terms of the projection of r onto the

opposite and adjacent legs of a right triangle,

� ¼ �tan�1 projection onto opposite leg

projection onto adjacent leg

� �

¼ �tan�1 r � q̂q1

r � q̂q0

� �
	 � tan�1 y

x

� �
: ð12Þ

Finally, we determine the optimal model of the experiment by

minimizing (2) over the set of bright observed reflections. We

use iterative nonlinear least-squares methods, requiring the

evaluation of the first derivatives of � with respect to a set of

underlying parameters {p} (Appendix A1). All of the experi-

mental quantities ŝs0, � and A may be considered to be func-

tions of one or more underlying parameters, for example the

unit vector ŝs0 has two directional degrees of freedom corre-

sponding to its latitudinal and longitudinal intersection with

the Ewald sphere, and the underlying parameter of � is � itself.

Furthermore, the orientation matrix A is a function of three

Euler angles, as well as three unit-cell lengths and three unit-

cell angles with appropriate constraints for crystal symmetry

(Sauter et al., 2006). Alternatively, the A matrix could be

parameterized in terms of the Rx and Ry misorientations

(Fig. 1b). Details concerning appropriate parameterizations

will be described elsewhere.

2.2. Best-fit crystal properties for the prediction of model
spots

Fig. 2 depicts the familiar Ewald-sphere construction that is

useful for visualizing which reciprocal-lattice points are near

the reflecting condition implied by Bragg’s law. To gain a

realistic prediction of which spots are observed, we do not

require lattice points to be precisely on the sphere; rather, we

accept points that are close to the sphere, within a certain

tolerance.

Fig. 2(a) portrays the usual tolerance criterion attributed to

mosaicity, requiring that spot i can be brought onto the sphere

by a minimal rotation through angle � i about the origin,

such that

� i

�� �� � �

2
; ð13Þ

where the angle � is interpreted as the effective mosaicity.

We use ‘effective’ to emphasize the limitation that we are not

distinguishing among the numerous underlying physical

phenomena that produce a spread of � i values consistent

with (13), such as mutual rotation of mosaic blocks, block-to-

block variation in unit-cell parameters and beam divergence.

Instead, we group together all factors that produce a

resolution-independent angular spread into the � parameter.

In contrast, Fig. 2(b) illustrates an alternative model with all

reciprocal-lattice points being assigned the same reciprocal-

space diameter �, leading to observed diffraction when

j� ij �
d�

2
; ð14Þ

dependent on the resolution d. A basic result from far-field

diffraction theory is that the size of the reciprocal-space spot is

inversely proportional to the size of the coherently diffracting

object. For a one-dimensional crystal of length D placed

normal to the beam, the diffracted spot width is � = 2/D, while

for three-dimensional solids an additional geometrical factor

arises from the Fourier transform of the crystal shape. For

mosaic crystals, the spot size is determined by the average

shape transform of the mosaic blocks. We will ignore these

details here, and simply state that

� ¼ 2

Deff

; ð15Þ

where the effective size Deff accounts for the fact that coher-

ently scattering mosaic blocks may occur in the crystal with a

distribution of shapes and sizes.

In real still-shot experiments with monochromatic light, we

expect the � i values for observed spots to have a distribution
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1 Supporting information has been deposited in the IUCr electronic archive
(Reference: WA5077).
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that reflects both resolution-independent (13) and resolution-

dependent (14) effects. To optimize our experimental model,

we therefore seek to find parameters � and � that form the

minimal envelope

� model ¼
d�

2
þ �

2
; ð16Þ

that accounts for all the observations

j� ij � � model: ð17Þ
We constructed plots of � versus resolution for the brightest

spots (see x3), and evaluated two curve-fitting techniques to

determine the best � and � values for predicting the full set of

lattice points (both bright and weak reflections) that intersect

the Ewald sphere.

2.2.1. Analytical least-squares curve-fitting for g and a. In

this approach, the bright-spot data are grouped into resolution

bins. For each bin we evaluate which observation gives the

largest magnitude of � i. We assign this value (|� |max) to

represent the envelope of observations at the average reso-

lution d of that bin. The immediate goal is to use linear least-

squares methods to derive the best curve � model(d) to fit the

|� |max. It is worth noting that once the maximum magnitude

is selected for each resolution bin, the full spread of obser-

vations is no longer used. We constructed a resolution bin for

every 25 bright spots; thus, only 1/25 of the � i values are

actually used for least-squares fitting.

The function to be minimized is

F ¼ PN
b¼1

ð� model;b � j� jmax;bÞ2; ð18Þ

where the sum is over all resolution bins b. With (16), this

becomes

F ¼ PN
b¼1

hdib�

2
þ �

2
� j� jmax;b

� �2

: ð19Þ

Minimizing this expression (Appendix B) gives the best least-

squares estimates for � and �.

2.2.2. Maximum-likelihood formalism for estimating g and
a. A drawback of the least-squares approach, as noted, is that

it selects only the bright observations with extreme values of

� i from which to derive the limiting envelope � model (16).

Here, we develop an alternative approach that uses all the

data together, which consistently gives smaller and more

realistic values for the half-width mosaicity (see x3).

We start with the premise of choosing a model envelope

with the greatest posterior probability (McCoy, 2004),

Pðmodel; dataÞ ¼ Q
i

Pðdata; i;modelÞ: ð20Þ

Inspired by Bayes’ theorem, this formulation posits that the

posterior probability of the model, given the data, is the

product over all Bragg spots i of the likelihood of the data,

given the model.

What is the likelihood P(data, i; model) of observing the

angular offset � i given the model? According to the para-

digm of (17), there is 100% likelihood that

�� model � � i � � model; ð21Þ
or, stated in other terms, the likelihood is a top-hat function

(Fig. 4),

Pi ¼
1

2� model

for j� ij � � model

Pi ¼ 0 everywhere else

(
: ð22Þ

It is clear that there is an optimal solution in which the

� model envelope (see x3) is just large enough to include the

observations. If |� model| is too small, some observations will

fall outside the envelope and the probability of the data Pi will

be zero. Conversely, if |� model| is too large, the probability

(22) again approaches zero asymptotically. A potential

problem is that the top-hat function (22) is not continuous and

cannot be differentiated at the boundaries � model, so it is not

suitable for iterative parameter-optimization techniques. We

therefore modify the equation to include sigmoidal functions

f and g that smoothly model the step-up and step-down

discontinuities in the top-hat, respectively,

Pi ¼
1

2� model

� f � g: ð23Þ

Suitable expressions for f and g may be derived from the

logistic functional form (1 + e�x)�1,

f ¼ 1 þ expð"Þ
1 þ exp½"ð�z þ 1Þ� ;

g ¼ 1 þ expð"Þ
1 þ exp½"ðz þ 1Þ� ;

where z ¼ � i

� model

: ð24Þ

Here, the parameter " controls the steepness of the sigmoid.

We choose a constant value of " = 10 throughout (Fig. 4),

giving a fairly gently slope; values larger than 50 would give

steep top-hat sides.

As Fig. 4 shows, expression (23) preserves the overall width

and height of the top-hat function, but is everywhere differ-

entiable, allowing us to proceed with parameter optimization

(Appendix B).

2.3. Data-processing workflow

The new procedures of xx2.1 and 2.2 were incorporated

into the program cctbx.xfel (Hattne et al., 2014). All modeling

of still diffraction images was implemented within a data-
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Figure 4
Probability of the observation � i given the model � model.
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processing workflow (Fig. 5) that relies exclusively on the

centroid positions of bright candidate Bragg spots identified

by a spotfinding procedure (Zhang et al., 2006). Weak spots,

spot shapes and spot intensities are not treated here, although

they will be included in future work, and we make the addi-

tional approximation that the incident X-rays are mono-

chromatic. Three candidate basis vectors from the program

LABELIT (Sauter et al., 2004) are chosen to span the lattice

formed by the bright spots, thus forming an initial triclinic

model (Steller et al., 1997). After refinement of this model with

either target function (1) or (2), the model is constrained to

the appropriate Bravais symmetry (Sauter et al., 2006) and re-

refined against either target (1) or (2). Integrated data from

multiple images were merged with the cxi.merge component

of cctbx.xfel as described in Hattne et al. (2014). Intensity

statistics were analyzed with phenix.xtriage (Zwart et al., 2005)

and structural models were refined with phenix.refine (Adams

et al., 2010). Tutorials on the operation of cctbx.xfel are given

at http://cci.lbl.gov/xfel.

2.4. Analysis of simulated diffraction data

Simulated still-shot diffraction patterns from PSI were

obtained from James Holton (LBNL) and are available at

http://bl831a.als.lbl.gov/example_data_sets/Illuin/LCLS. The

images were created with the program fastBragg as described

in Kirian et al. (2010, 2011), utilizing modeled structure factors

from Protein Data Bank entry 1jb0. Spatially coherent simu-

lations of randomly oriented parallelepiped nanocrystals

(17 � 17 � 30 unit cells; cell lengths a = b = 281, c = 165.2 Å)

were performed, assuming constant-flux, polarized, mono-

chromatic radiation (� = 1.32 Å) with zero divergence

impinging on a pixel-array detector with pixel size (0.11 mm)2

at a distance of 129 mm from the sample. Solvent scattering

and shot noise were added so as to effectively limit the reso-

lution to about 3.3 Å. At very low resolutions (d > 60 Å) the

simulation exhibits diffraction fringes between Bragg spots

as previously observed for PSI (Chapman et al., 2011; not

shown); however, the present paper attempts to analyze only

the central Bragg peak, and we limit our analysis to the 15–

3.5 Å resolution range. Angular misorientation between the

cctbx.xfel models and the true crystal orientations used for the

simulation were calculated after accounting for the orienta-

tional ambiguities owing to the lattice symmetry operators

(sixfold along z and twofold along xy).

2.5. Application to experimental XFEL data

Thermolysin diffraction patterns were reprocessed from a

previously described 2.1 Å resolution data set (Hattne et al.,

2014) that is publicly archived at the Coherent X-ray Imaging

Data Bank (accession ID 23). The typical crystal size was

approximately 2 � 3 � 1 mm (Sierra et al., 2012). Since the

thermolysin structure contains a single Zn atom, it was

possible to use the signal-to-noise ratio of the anomalous

difference electron density as a metric for the quality of data

processing. We therefore limited the analysis to data (runs 16–

27) collected at a wavelength of 1.269 Å, which is slightly more

energetic than the Zn K edge at 1.284 Å. As this discarded

runs 71–73 that included the highest resolution data, we were

obliged to choose a slightly lower diffraction cutoff (2.2 Å)

than that previously reported. We selected 14 041 images

containing >15 Bragg spots for further processing using either

the same protocol employed in the previous analysis (Hattne

et al., 2014; column ‘NM’ in Table 2) or the new procedures

of xx2.1 and 2.2. Diffraction from up to two separate crystal

lattices was analyzed for each image.

3. Results

To assess how well data-processing algorithms can model still-

shot crystal orientations and structure factors, we began by

analyzing simulated diffraction images, reasoning that this

would provide a comparison against the known true values.

Aggregate results for six different protocols are presented in

Table 1. We next evaluated processing performance on actual

XFEL data from the protease thermolysin, with the results

given in Table 2.

3.1. Judging the model accuracy based on experimentally
accessible measures

For the development of data-processing algorithms, simu-

lated data confer the unique advantage of knowing the ‘true’

hidden variables used to generate the simulation. For each of

the six protocols used to model the simulated PSI data

(Table 1), we can therefore calculate what fraction of Bragg

spots are falsely predicted by the model and what fraction of

Bragg spot signal in the simulated images remain unmodeled

(Table 1 and Fig. 6); the results ranged from poor (protocols 1

and 3) to very good (protocol 6). Unexpectedly, we found that
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Figure 5
cctbx.xfel data-processing workflow. Steps leading to integrated data are
listed in black, while choices that are under user control are listed in red.
Program parameters controlling these choices are given in a tutorial at
http://cci.lbl.gov/xfel.
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Table 1
Processing outcome on simulated PSI data with different protocols.

Non-optimal spotfinding and indexing Equation (1) only Equations (1) and (2) Best practice†

Protocol 1 2 3 4 5 6

Refinement target
Initial triclinic cell Equation (1) Equation (1) Equation (1) Equation (1) Equation (2) Equation (2)
Constrained hexagonal cell Equation (1) Equation (1) Equation (1) Equation (1) Equation (1) Equation (2)

Indexing practices
Spotfinder spot area (pixels) 
2 
1 
1 
1 
1 
1
Spotfinder method 2 cutoff (%) 5 20 5 5 5 5
Target unit cell Provided Provided Not given Provided Provided Provided

Indexing results
Total No. of images 20000 20000 20000 20000 20000 20000
No. of integrated and merged images 19706 19490 18926 19608 19998 19984

Model accuracy
R.m.s. Rz misorientation (�) 0.039 0.041 0.040 0.017 0.017 0.017
R.m.s. Rx + Ry misorientation (�) 0.379 0.586 1.108 0.584 0.083 0.031
R.m.s. total angular misorientation (�) 0.381 0.588 1.109 0.584 0.085 0.035
Median total angular misorientation (�) 0.130 0.087 0.134 0.078 0.054 0.021
No. of outliers >0.1� misoriented 13085 9264 13136 7971 4566 172
False Bragg predictions, 15–3.5 Å (%) 65.0 54.3 64.7 51.6 40.0 9.1
Unmodeled Bragg spots, 15–3.5 Å (%) 15.4 10.9 13.3 10.4 10.0 8.0
Half-width mosaicity‡ (�) (true value 0�) 0.101 0.080 0.098 0.050 0.025 0.000
Mosaic block size‡ (Å) (true value �4850 Å) 5160 4660 4960 4660 4780 5100

Integrated data results
hIndividual image CCi (%) 51.6 54.1 50.6 56.3 61.2 70.1
No. of measurements, 15–3.5 Å 38398465 35264088 38755029 36948917 32210606 22817281
Positive measurements, 15–3.5 Å 26322687 25323211 26836439 26779348 24458975 19303707
Negative measurements (%) 31 28 31 28 24 15

Structure-factor merging
Unique Miller indices, 15–3.5 Å 92204 92204 92204 92204 92204 92204
Multiplicity of observation 286 275 291 290 265 209
Completeness (%) 100 100 100 100 100 100
I/�(I) 33.4 36.0 33.8 38.0 40.9 46.0
CCiso versus 1jb0 (based on intensities) (%) 96.6 96.6 95.8 96.8 97.5 99.0
Riso versus 1jb0 (based on intensities) (%) 36.7 33.0 35.5 32.1 27.7 18.1

Structure-factor quality tests
h|L|i (acentric theoretical = 0.5) 0.270 0.299 0.282 0.301 0.320 0.358
hL2i (acentric theoretical = 0.333) 0.109 0.131 0.118 0.132 0.148 0.182
P(Z) maximum deviation (acentric) 0.263 0.223 0.245 0.222 0.197 0.154
P(Z) maximum deviation (centric) 0.364 0.332 0.341 0.330 0.306 0.243

† cctbx.xfel now runs protocol 6 by default, while the other protocols may be accessed by changing the program parameters described at http://cci.lbl.gov/xfel. ‡ Half-width mosaicity
and mosaic block size were fitted by the maximum-likelihood approach outlined in Appendix B. The values reported here are hDeffi and 1/h�i, respectively, where hi is the average over
all merged images.

Figure 6
Agreement of model and data. ‘True knowledge’ of the system used for the PSI simulation gives the fraction of Bragg spots falsely predicted (a) and the
fraction of Bragg spots in the simulation that remain unmodeled (b) for each of the six protocols listed in Table 1. Integrated data from all simulated
images are grouped into reciprocal-space shells of equal volume ranging from 15 to 3.5 Å.
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some data-quality measures that would normally be accessible

in a real experiment offered only limited insight into the true

model quality. For example, one might expect that protocols

producing poor models might also have a reduced success rate

in indexing the lattice, yet we find instead that the poorest

protocols still index 
94% of the images. Combined with the

fact that with a realistically heterogeneous distribution of

crystals it would be difficult to precisely count the total

number of ‘hits’ that contain Bragg spots, we must conclude

that the overall count of integrated and merged images offers

little insight into the model quality.

Two other measures, the best-fit effective mosaicity and the

number of negative measurements, could potentially be useful

for understanding model quality (Table 1). Protocols 1 and 3,

which produce the most misoriented models and the largest

fractions of falsely predicted Bragg spots, also yield the highest

model mosaicities. This is consistent with the idea that a

misoriented model places the reciprocal-lattice centers of the

observed spots far from the Ewald sphere (high � i),

requiring large mosaicity values (Fig. 2a) to bring the centroids

back into diffracting position. Smaller average mosaicities

over the whole population of images, as for protocol 6, are

therefore an indication of a better-conforming model. In a

similar fashion, the number of negative measurements (Table

1) partly reflects the prevalence of falsely predicted Bragg

spots that give ‘signals’ containing Gaussian noise, with posi-

tive and negative measurements evenly distributed around

zero. Once again, protocol 6, with the best-conforming models,

also generates the lowest percentage of negative measure-

ments. The multiplicity of observation (Tables 1 and 2), or the

average number of repeat measurements of the same Miller

index, is inversely related to the model quality: more accurate

models give lower multiplicity. While this may be counter-

intuitive, it is a direct consequence of smaller, more well

conforming effective mosaicity values predicting fewer spots,

while at the same time a greater fraction of the predicted spots

have true signal.

Other data-quality metrics, which rely on an analysis of data

after they are scaled and merged, certainly reflect the model

quality, but their interpretation is complicated by other

factors. I/�(I), which is maximal in the best protocols (Tables 1

and 2), not only reflects the modeling of individual images

but for real still shots is influenced by the protocols chosen

to scale and merge the images (Hattne et al., 2014), by non-

isomorphism among crystals, by other shot-to-shot differences

in beam and sample, and by the partial nature of the structure-

factor measurements from still images (not treated here).

Finally, the L and N(Z) statistical tests of structure-factor

quality that are widely used in other contexts to detect twin-

ning (Padilla & Yeates, 2003) are also usefully correlated with
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Table 2
Processing outcome on measured XFEL still shots from thermolysin.

Previous work† Equation (1) only Equations (1) and (2) Best practice

Protocol NM 4 5 6

Refinement target
Initial triclinic cell Equation (1) Equation (1) Equation (2) Equation (2)
Constrained hexagonal cell Equation (2) Equation (1) Equation (1) Equation (2)
Fitting of mosaicity and block size Least squares Maximum likelihood Maximum likelihood Maximum likelihood

Indexing results‡
Total No. of hits with >15 Bragg spots 14041 14041 14041 14041
No. of integrated and merged lattices 11151 12097 11958 12551

Model accuracy
Half-width mosaicity (�) 0.471 0.292 0.286 0.168
Mosaic block size (Å) 2920 4320 4320 4220

Integrated data results
hIndividual image CCi (%) 32.5 32.0 32.3 40.2
No. of measurements, 51–2.2 Å 5793963 6605566 6538120 5036076
Positive measurements, 51–2.2 Å 3893827 4297065 4265829 3626262
Negative measurements (%) 33 35 35 28

Structure-factor merging
Unique Miller indices, 51–2.2 Å 17156 17198 17193 17297
Multiplicity of observation 222 245 243 207
Completeness (%) 97.9 98.2 98.2 98.8
I/�(I) 41.1 36.1 36.7 56.7
CCiso versus 4ow3 (based on intensities) (%) 90.1 86.8 86.6 94.7
Riso versus 4ow3 (based on intensities) (%) 22.5 23.6 23.4 18.0

Structure-factor quality tests
h|L|i (acentric theoretical = 0.5) 0.340 0.302 0.304 0.376
hL2i (acentric theoretical = 0.333) 0.169 0.137 0.138 0.202
P(Z) maximum deviation (acentric) 0.159 0.201 0.196 0.121
P(Z) maximum deviation (centric) 0.238 0.271 0.265 0.198

Quality of refined structure
Rwork (%) 21.9 24.5 24.2 20.6%
Rfree (%) 27.9 29.6 29.8 26.0
Zn2+ anomalous difference map peak height (�) 3.5 2.9 3.0 5.9

† This column replicates the method in our previous publication (Hattne et al., 2014) used to derive the thermolysin structure (PDB entry 4ow3). ‡ For the thermolysin data analysis,
candidate Bragg spots were chosen with a minimum spot area of two square pixels.
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the model accuracy (Table 1), but are subject to the same

caveats as discussed for I/�(I).

3.2. Accuracy depends on optimal spotfinding and indexing
parameters

Fig. 5 indicates the decision points that we investigated in

our data-processing workflow. The first two relate to the

spotfinding practices used to obtain the set of candidate Bragg

spots for indexing. We found it necessary to carefully custo-

mize the program parameters (Zhang et al., 2006) for indivi-

dual data sets. For the PSI simulated data, the largest and best

set of candidate spots was obtained by lowering the minimum

spot area to one pixel; comparing protocols 4 and 1 in Table 1

shows that the model quality is degraded by imposing a stricter

minimum spot area of two pixels, giving a smaller set of Bragg

spots from which to index. For the thermolysin data (and

indeed for most real XFEL data sets) we were obliged to use a

minimum spot area of two pixels, since the more aggressive

limit of one pixel produces too many candidate spots that

represent noise, thereby degrading the indexing result.

Secondly, for both PSI and thermolysin the candidate Bragg

spot set was extended to the highest resolution by lowering

the ‘method 2 cutoff’ (Zhang et al., 2006) to 5%. The more

stringent cutoff of 20% used by default for rotation data sets

in LABELIT eliminates too many actual high-resolution

candidate spots required for an optimal indexing solution

(compare protocols 4 and 2). We optimize both spotfinding

parameters in practice by visualizing their effects within a

graphical interface.

A third decision point reflects the method for choosing basis

vectors to form the unit cell; the quality of the orientation

matrix was markedly improved by providing target values

for the unit-cell lengths and angles as previously described

(Hattne et al., 2014); compare protocols 4 and 3.

3.3. Best accuracy and best signal are achieved with the
hybrid target function

Beyond these factors, we found that the inclusion of a � 
term in the orientational refinement (2) greatly improves the

model angular orientation, producing mosaicity values that

conform better to the experiment, smaller sets of unwanted

‘negative measurements’ and more acceptable merged struc-

ture factors as evaluated by Riso (protocols 5 and 6, Tables 1

and 2). The use of (2) also improves the L and N(Z) statistical

tests noted above, which are often used to detect phenomena

such as twinning (Padilla & Yeates, 2003), but which for us

simply give a general measure of structure-factor quality

(Tables 1 and 2). We observe the best results (protocol 6)

when (2) is applied sequentially to both refinement steps

executed by cctbx.xfel: the initial triclinic refinement that

independently modifies six unit-cell dimensions (three lengths

and three angles) and three orientational degrees of freedom,

as well as a second refinement step during which Bravais

symmetry constraints are applied. Failure to apply the orien-

tational � term during either of these steps allows the model

to diverge (protocols 4 and 5 and data not shown).

Following all of the best practices (protocol 6) for simulated

PSI data (Table 1) leads to a high fraction (>99%) of orien-

tational models being within 0.1� of the correct alignment,

produces an average mosaicity identical to the true value of

0.0� and models the average domain block size with a value

(5100 Å) very close to the true value of 4780–4950 Å for a

17 � 17 � 30 unit cell crystallite.

For the thermolysin XFEL data, protocol 6 also leads to the

lowest crystallographic R factors (Rwork and Rfree of 20.6 and

26.0%, respectively, at 2.2 Å resolution; Table 2) when auto-

matically refining the structure using the published structure

4ow3 as input. Protocol 5, which uses refinement target (1)

for the second cell-refinement step, produces much poorer R

factors (about four percentage points higher). Furthermore,

the improvements conveyed by protocol 6 also allow us to

clearly identify the anomalous difference signal from natively

bound Zn2+ in a Fourier map at a level of 5.9 standard

deviations (�) above the noise (Table 2), as opposed to 3.0�
for protocol 5. For a weak anomalous signal such as this, the

improvement owing to the orientational � term therefore

makes a crucial difference in unambiguously identifying a

metal site.

3.4. Physical properties of the crystals

Once the crystal orientation has been refined as above, the

residual values of � clearly show the mosaic structure of

crystals when plotted against the diffraction angle (Fig. 7). The

average block sizes of the mosaic domain Deff are reflected in

the wide spread of � residuals observed at low resolution

(14), while the narrow taper at high resolution is a measure of

the effective mosaicity angle � (13). Indeed, it is critical to

derive correct values for these parameters when modeling an

image; an overall envelope � model that is too narrow will

fail to include real Bragg spot signals, while an overly wide

envelope will falsely predict Bragg spots, thus mixing Gaussian

noise into the average structure factors. Of the two methods

evaluated for determining � and Deff, the maximum-likelihood

approach (Fig. 7b) consistently outperformed the least-

squares method (Fig. 7a) and was ultimately adopted for all of

the data presented in Tables 1 and 2. This judgment was based

on lower � for the simulated PSI data set (which ideally should

be 0�), a lower percentage of negative measurements for both

data sets, better structure-factor quality tests, better crystallo-

graphic R factors for the thermolysin structure refinement and

higher significance levels for the Zn2+ anomalous peak (data

not shown).

4. Discussion

This paper describes methods for correctly predicting the set

of Bragg spots observed in diffraction still shots. Previous

indexing approaches (Kirian et al., 2010) modeled the orien-

tation of simulated PSI crystals to an r.m.s. error of 0.06�.

Here, we reduce the r.m.s. misorientation to 0.038� by intro-

ducing an additional term in the least-squares refinement

target function (2), and quantify the extent to which better-
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oriented models have a superior ability to predict the actual

set of Bragg spots in the data (Fig. 6). We show that

improvements of this scale lead to more accurate structure

factors and enhance the ability to detect anomalous (Bijvoet)

differences. Optimal models for extracting structure factors

will make XFEL experiments more practical: a recent SAD

phasing study using Gd-derivatized lysozyme required

�60 000 still shots to obtain adequate signal to noise (Barends

et al., 2013), but for many proteins it is challenging to prepare

this many crystals, and XFEL beam time is scarce. Better still-

shot treatment will also facilitate those synchrotron experi-

ments for which high radiation sensitivity precludes more than

one shot per crystal (Grimes et al., 1998).

Traditional modeling of rotation data sets (Kabsch, 2010)

includes an effective mosaicity parameter that captures the

effects of beam divergence, as well as differences in unit-cell

parameters and orientation among mosaic blocks within the

crystal. The mosaicity value controls the number density of

Bragg spots predicted by the model, and is thus crucial for

correctly modeling rotation data and still-shot data alike.

However, for still-shot data we find that mosaicity by itself

is insufficient, and a second parameter must be introduced to

properly model the resolution-dependency of the observed

density of Bragg spots. At the lowest resolutions (small

diffracting angles) more diffraction spots are observed when

the average block size of mosaic domains is small. This addi-

tional parameter, which can be determined by analyzing

� max (the largest angular rotation needed to bring model

spot centroids into ideal Bragg diffracting conditions), is

crucial for modeling still shots from both simulated data and

real experimental data from XFEL sources. We included

the domain block size parameter in our recent analyses of

photosystem II (Kern et al., 2013, 2014) and thermolysin

(Hattne et al., 2014; protocol ‘NM’ in Table S2), although the

data-treatment method (Fig. 7) is presented here for the first

time.

These methods improve the correspondence between the

set of spots observed and those predicted by the model. An

important issue that must still be resolved is how to relate the

intensities measured from still shots to those derived from

rotation exposures, which have the benefit of fully moving

each reciprocal-lattice point through the reflection condition.

Still shots clearly lead to a partial measurement of the Bragg

spot since the intensity is only sampled at one point of the

rocking curve. We propose that the � concept offers a

framework to approach this partiality problem: with all other

things equal (crystal size, incident beam intensity, unit-cell

parameters) the intensity of the partial measurement reaches

a peak at |� | = 0 and falls off to zero at large |� |. This

information may be sufficient to determine the relative scaling

between duplicate measurements of a Bragg spot from

numerous crystals, although the details of the scaling proce-

dure have yet to be worked out.

We reiterate that the formulae presented in this paper rest

on the assumption that the incident radiation is monochro-

matic, allowing us to represent the reflection condition (Fig. 2)

with an Ewald sphere of clearly defined radius 1/�. This is a

very good approximation for synchrotron sources that can

typically be tuned to very small bandpasses (10–4). Indeed,

recently reported data collected with still shots (Axford et al.,

2014) could likely benefit from the improved model accuracies

achieved here. Also, recent synchrotron techniques that scan
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Figure 7
Two methods for fitting the mosaicity and mosaic block size. � values for bright spots from a single thermolysin still image (blue circles) are plotted as a
function of the diffraction angle 2�, which is inversely related to the resolution d by Bragg’s law. A wider spread of � values is observed at low 2�. The
best integrated intensities are obtained by finding the function � model (green curve) that minimally envelopes the spots. (16) breaks � model into a
resolution-dependent term containing the effective mosaic block size Deff (inner red curve) and a peripheral zone of constant width determined by the
effective mosaic spread �. Alternate algorithms determine these parameters either by (a) least-squares fit of the |� |max values determined for resolution
bins or (b) maximum-likelihood treatment of all of the data. Approach (b) consistently gives more realistic fits with smaller � and larger Deff values. Plots
reflect refinement results from protocol 6 (Table 2).
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rapidly through numerous crystals by loop-based rastering

(Gati et al., 2014), capillary flow (Stellato et al., 2014), acoustic

injection (Roessler et al., 2013) or microfluidic sample delivery

(Heymann et al., 2014) could benefit from accurate processing

techniques that enable still-shot data collection. Fast

synchrotron-source pseudo-stills offer tremendous potential

for avoiding radiation damage (Owen et al., 2014) while

probing biologically relevant conformational details that can

only be detected at room temperature (Keedy et al., 2014). The

situation with XFEL sources is more complicated, since the

stochastic lasing process generates hard X-ray bandpasses on

the order of 0.5% (Emma et al., 2010). The monochromatic

model is a useful starting point for XFEL data analysis

(Table 2), which we are currently working to extend to

explicitly model finite-width X-ray spectra. Additionally,

recent self-seeding techniques (Amann et al., 2012) offer the

possibility of future XFEL data collection with a narrow-

bandpass incident spectrum.
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