
electronic reprint

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

New Python-based methods for data processing

Nicholas K. Sauter, Johan Hattne, Ralf W. Grosse-Kunstleve and Nathaniel
Echols

Acta Cryst. (2013). D69, 1274–1282

This open-access article is distributed under the terms of the Creative Commons Attribution Licence
http://creativecommons.org/licenses/by/2.0/uk/legalcode, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original authors and source are cited.

Acta Crystallographica Section D: Biological Crystallography welcomes the submission of
papers covering any aspect of structural biology, with a particular emphasis on the struc-
tures of biological macromolecules and the methods used to determine them. Reports
on new protein structures are particularly encouraged, as are structure–function papers
that could include crystallographic binding studies, or structural analysis of mutants or
other modified forms of a known protein structure. The key criterion is that such papers
should present new insights into biology, chemistry or structure. Papers on crystallo-
graphic methods should be oriented towards biological crystallography, and may include
new approaches to any aspect of structure determination or analysis. Papers on the crys-
tallization of biological molecules will be accepted providing that these focus on new
methods or other features that are of general importance or applicability.

Crystallography Journals Online is available from journals.iucr.org

Acta Cryst. (2013). D69, 1274–1282 Sauter et al. · Data processing

http://journals.iucr.org/d/
http://dx.doi.org/10.1107/S0907444913000863
http://creativecommons.org/licenses/by/2.0/uk/legalcode
http://journals.iucr.org/d/
http://journals.iucr.org
http://crossmark.crossref.org/dialog/?doi=10.1107/S0907444913000863&domain=pdf&date_stamp=2013-06-18


research papers

1274 doi:10.1107/S0907444913000863 Acta Cryst. (2013). D69, 1274–1282

Acta Crystallographica Section D

Biological
Crystallography

ISSN 0907-4449

New Python-based methods for data processing

Nicholas K. Sauter,* Johan

Hattne, Ralf W. Grosse-

Kunstleve and Nathaniel Echols

Physical Biosciences Division, Lawrence

Berkeley National Laboratory, 1 Cyclotron

Road, Berkeley, CA 94720, USA

Correspondence e-mail: nksauter@lbl.gov

Current pixel-array detectors produce diffraction images at

extreme data rates (of up to 2 TB h�1) that make severe

demands on computational resources. New multiprocessing

frameworks are required to achieve rapid data analysis, as it

is important to be able to inspect the data quickly in order

to guide the experiment in real time. By utilizing readily

available web-serving tools that interact with the Python

scripting language, it was possible to implement a high-

throughput Bragg-spot analyzer (cctbx.spotfinder) that is

presently in use at numerous synchrotron-radiation beamlines.

Similarly, Python interoperability enabled the production of

a new data-reduction package (cctbx.xfel) for serial femto-

second crystallography experiments at the Linac Coherent

Light Source (LCLS). Future data-reduction efforts will need

to focus on specialized problems such as the treatment of

diffraction spots on interleaved lattices arising from multi-

crystal specimens. In these challenging cases, accurate

modeling of close-lying Bragg spots could benefit from

the high-performance computing capabilities of graphics-

processing units.

Received 24 October 2012

Accepted 9 January 2013

1. Introduction

It is widely recognized that modular and reusable code speeds

up software development. In crystallography, the collaborative

efforts embodied in the CCP4 software suite have been greatly

facilitated by the availability of libraries (Winn et al., 2002,

2011) that provide common file formats for describing atomic

structures, structure factors and electron-density maps. Two

additional features of software design have also been impor-

tant: object-oriented programming (Grosse-Kunstleve et al.,

2002; Cowtan, 2003), which allows computational problems to

be attacked at a high level of abstraction, and scripting, which

enables the rapid testing of new ideas. Modules that imple-

ment these principles, such as those in the Computational

Crystallography Toolbox (cctbx; Grosse-Kunstleve et al., 2002;

Bourhis et al., 2007), have been used as efficient building

blocks for numerous crystallographic applications, including

small-molecule (Dolomanov et al., 2009) and macromolecule

(Adams et al., 2010) structure solution, indexing (Sauter et al.,

2004) and scaling (Evans, 2006), and data-processing work-

flows (Winter, 2010). The ability to customize scripted tools

for use in new contexts, and the capacity of various software

toolboxes to work together, are key ingredients in developing

new programs that support the crystallography experiment as

it evolves over time.

X-ray crystallographic data collection has profoundly

changed in recent years with the introduction of fast area

electronic reprint



detectors based either on pixel-array area-detector (PAD) or

p–n junction charge-coupled device (pnCCD) technologies.

These detectors enable framing rates ranging from 25 Hz at

synchrotron sources (Eikenberry et al., 2003) to 120 Hz at free-

electron lasers (Strüder et al., 2010; Philipp et al., 2010). With

such high framing rates, the inspection and analysis of data

has emerged as a potential bottleneck, requiring new multi-

processing approaches for timely data processing. One

important element, of course, is the allocation of sufficient

computing hardware, but software design is also paramount

for increasing efficiency. New software is needed to correctly

model the physical properties unique to these detectors, such

as neighboring-pixel charge sharing and the point-like quality

of Bragg spot observations, which departs from previous-

generation Bragg signals that were convoluted with a signifi-

cant point-spread function.

In this article, we consider how a toolbox such as cctbx

can contribute to the immediate data-processing events

surrounding data collection and to the creation of improved

algorithms to treat marginal data in general, including

diffraction patterns exhibiting two or more lattices. After

briefly describing the cctbx architecture and its potential to

facilitate software collaboration (x2), we provide examples

that illustrate its present (x3) and future (x4) uses in the

beamline computing environment.

2. cctbx as a collaborative platform

As a long-term collaborative effort between several groups,

cctbx has assumed the form of a warehouse of algorithms,

libraries and tools (Fig. 1), from which the best one can be

chosen to solve a given problem. Lower-level implementations

impacting almost any crystallographic project include share-

able memory-managed arrays, linear algebra, unit cells, space-

group symmetry and structure factors. The iotbx.detectors

package is of specific interest for data reduction, allowing data

to be input from numerous X-ray detector file formats.

For programmers interested in rapidly testing new algo-

rithms, cctbx thus offers the ability to efficiently express new

ideas at a high level of abstraction. Consider the following

four-line example, which at first appears to be a very simple

segment of code in Python language,

image = ImageFactory(filename)

spots = image.get_spotfinder()

tiles = image.get_tile_manager()

graphics = image.get_flex_image()

Here, ImageFactory is a function that reads many types of

detector data (with automatic detection of the format) and

returns an image object that has a uniform interface. The

interface includes functions to instantiate a spots object that

can find and report the observed Bragg spots, a tiles object

that contains geometry information allowing a data-reduction

program to avoid signal integration on inactive areas of the

image and a graphics object that allows the raw data to be

rendered in an appropriate form within a graphical user

interface. Thus, very complex applications can be written on

top of simple commands.

Powerful interfaces like this are enabled by the hybrid-

language boost.python architecture chosen for cctbx (Abra-

hams & Grosse-Kunstleve, 2003). Core functions are written

in C++ and exposed as Python functions, resulting in excellent

performance for algorithms that are CPU-limited when opti-

mized with modern compilers. Furthermore, the interoper-

ability of C++ and C makes it possible to link to indispensable

libraries authored by third parties. These include the CCP4

CMTZ library for structure-factor input/output (Winn et al.,

2002), Herbert Bernstein’s CBFlib for crystallographic binary

format (Bernstein & Ellis, 2005) and the University of

Maryland Approximate Nearest Neighbor Library (Arya et

al., 1998), which is useful for matching up predicted and

observed Bragg spot positions using a fast binary-tree algo-

rithm. Meanwhile, higher-level concepts in the toolbox are

expressed in Python scripting language, thus bringing together

the compiled components of the program. New applications

are generally prototyped in Python, with numerically intensive

sections being ported to C++ as needed.

The source code in cctbx is comprised of contributions

from numerous separately funded software projects such as

PHENIX (Adams et al., 2010), LABELIT (Sauter et al., 2004),

OLEX2 (Dolomanov et al., 2009) and xia2 (Winter, 2010),

which have all produced reusable core modules (Fig. 1) of

general interest. Collaboration has been facilitated by

hosting the code at the publicly accessible Sourceforge site

research papers

Acta Cryst. (2013). D69, 1274–1282 Sauter et al. � Data processing 1275

Figure 1
Overall organization of cctbx, showing selected modules relevant to the
applications described in this article. In addition to standalone core
modules, cctbx provides object-oriented Python bindings to the
C-language libraries CMTZ (Winn et al., 2002), CBFlib (Bernstein &
Ellis, 2005) and ANN (Arya et al., 1998). Python scripting allows the cctbx
code to interoperate with externally developed packages. Functions of
interest are provided by the packages NumPy (http://www.numpy.org),
mod_python (Trubetskoy, 2007), pyana, wxPython (Rappin & Dunn,
2006), matplotlib (http://matplotlib.org), PyCUDA (Klöckner et al., 2012)
and h5py (http://code.google.com/p/h5py).

electronic reprint



(http://cctbx.sf.net), along with the use of a concurrent

versioning system (Collins-Sussman et al., 2008) that allows

participants to document the purpose of each code revision.1

Nightly distributions are created automatically, allowing users

to obtain the latest code in binary-executable form running on

GNU/Linux, Mac OS X and Windows platforms. Furthermore,

the nightly build process includes an extensive set of test

scripts, run on all platforms, which verify that new code does

not break the expected behavior of the existing code. Project

contributors are expected to be diligent in writing these test

cases to exercise any important feature, for it is this discipline

that has allowed the project to accept contributions across

continents for many years. Any failure of a test script shows up

on a nightly web page, along with a stack trace identifying the

point of failure, allowing corrective action.2

3. An extremely fast spotfinder for real-time
applications

Python scripting gives the programmer access to numerous

external code libraries, which have proven to be of enormous

help in developing code that operates in a variety of experi-

mental contexts. For the remainder of this article, we show

how scripted tools originating outside the crystallographic

domain (Fig. 1, right column) have been beneficially inte-

grated with cctbx-based code, leading, for example, to the

deployment of the cctbx Bragg spot picker for new experi-

mental uses.

3.1. Synchrotron implementation

The spotfinder package within cctbx (Zhang et al., 2006)

selects candidate Bragg spots for autoindexing (Sauter et al.,

2004) and is therefore a fundamental component of

synchrotron-based data processing. Bragg spot analysis has

also become important in high-throughput sample screening,

in which small partial data sets are streamed through auto-

mated pipelines such as Web-Ice (González et al., 2008),

EDNA (Incardona et al., 2009) or STARS (Yamada et al.,

2008) that link spotfinding, autoindexing and strategy deter-

mination to select the best samples for full data collection.

More recently, the introduction of microbeams has allowed

specimens to be scanned with low-dose X-rays along a

rasterized grid to optimize the sample-positioning step for

crystals that are either difficult to see or inhomogeneous; for

example, samples in lipidic cubic phase (Cherezov et al., 2009).

Analysis with spotfinder provides various measures of

diffraction quality (number of spots, total spot intensity and

resolution limit) and several beamline-control interfaces plot

these statistics on a graphical display superimposed on the

videomicrograph of the sample (Song et al., 2007; Soltis et al.,

2008; Cherezov et al., 2009; Hilgart et al., 2011; Stepanov et al.,

2011; Bowler et al., 2010; Aishima et al., 2010; Winter &

McAuley, 2011).

The overall speed of the raster scan depends on several

experimental factors, including the granularity of the raster

grid and the chosen exposure time, but it is clearly desirable

that the spotfinding analysis should never be the rate-limiting

step of the overall process. This became a software-engineering

challenge after several beamlines deployed PILATUS 6M

PAD hardware for raster scans with continuous sample motion

and shutter-free data acquisition (Aishima et al., 2010).

Corresponding data rates reach 25 images s�1, yet the spot-

finder procedure typically requires 2.0 s to sequentially read

the data, classify the pixels as signal or noise, identify spots,

eliminate ice or powder rings and apply spot-quality heuristics

(Sauter, 2010). As none of these steps dominates the CPU

usage, there is no easily identifiable portion of the code that

can be rewritten to improve performance. Therefore, the most

straightforward route to speed up overall throughput is to use

multiple cores to process separate and independent images

simultaneously.

To implement concurrent processing, we chose a client–

server paradigm in which the server maintains a persistent

Unix process to analyze successive images, thus eliminating

the need to reload the dynamic libraries (and saving 0.5 s per

research papers

1276 Sauter et al. � Data processing Acta Cryst. (2013). D69, 1274–1282

Figure 2
Client–server architecture for a high-throughput Bragg spot analyzer.
The illustrated client (a) is a web browser, but the client is usually the
beamline component responsible for the raster scan, such as Blu-Ice
(McPhillips et al., 2002) or GDA (Aishima et al., 2010), implemented in
any language that supports the HTTP protocol. The server (b) is a
multicore Linux system running the Apache httpd daemon, which
delegates incoming requests to one of 48 parallel child processes, each of
which runs Python-language cctbx code mediated by the mod_python
package (c). The server returns text-based output identical to that
produced by the command-line program distl.signal_strength. There is
also an option for the returned text to be formatted in extensible markup
language (XML) suitable for automated control-system clients. Full
instructions are given at http://cci.lbl.gov/labelit/html/client_server.html.

1 Prospective contributors may contact the authors to obtain developer
credentials for the project website.
2 http://cci.lbl.gov/cctbx_build/. Navigate to the nightly logs by selecting ‘Show
unreleased builds’ and then ‘summary’.

electronic reprint



image). Rather than expending any effort writing new server

code, readily available tools were selected. With minimal work

(Fig. 2), the spotfinder service was refactored as a dynamic

webpage served by the Apache program httpd (http://

httpd.apache.org), which transparently handles multi-

processing by delegating each new image to the next available

httpd child process. The child processes are configured to use

mod_python, another freely available module that exposes a

Python-language interpreter (Trubetskoy, 2007) suitable for

running cctbx code within the Apache server. Within this

paradigm, the client can be any beamline-control software

component that conducts the raster scan, typically written by

the synchrotron staff. A familiar application-layer protocol

(HTTP) is used for client–server communication, allowing the

server to be tested just by typing in a correctly formed address

into a web browser (Fig. 2). As a general benchmark, it is

possible to process PILATUS 6M images at a rate of

25 images s�1 on a 48-core 64-bit 2.2 GHz AMD Opteron

machine running GNU/Linux (Sauter, 2011).

3.2. Free-electron laser implementation

A multiprocessing strategy is also effective in examining

the data collected during serial femtosecond crystallography

(SFX) experiments at X-ray free-electron lasers. Crystallo-

graphic studies at these facilities (Chapman et al., 2011) have

focused firstly on the examination of crystal specimens that

are too small (�1 mm) for study at synchrotron sources

(Johansson et al., 2012; Koopmann et al., 2012) and secondly

on the characterization of metalloprotein catalytic centers

(Kern et al., 2012) that are susceptible to radiation damage on

the exposure time scales required for data collection using

synchrotron radiation (Yano et al., 2005). Radiation damage is

avoided by using femtosecond X-ray laser pulses to produce

diffraction before damage processes have altered the structure

(Lomb et al., 2011; Barty et al., 2012). Diffraction data

collection differs dramatically from synchrotron-based

protocols, chiefly owing to the short exposure time, which

produces still shots rather than rotation data sets, and the high

photon fluence, which destroys each sample after one shot,

requiring the full data set to be built up from tens of thousands

of stills from randomly oriented crystals (Kirian et al., 2010,

2011; White et al., 2012). The delivery of such a large number

of crystals at a high rate has been accomplished by liquid-jet

technology (DePonte et al., 2008; Sierra et al., 2012). While

straightforward in principle, the combination of liquid-jet

sample delivery with SFX data collection entails numerous

variables that must be adjusted in real time, such as the rela-

tive positioning of the X-ray pulse and liquid jet, sample-flow

parameters, beam attenuation, synchronization of beam and

readout, and choice of microcrystal batch. To help fine-tune

the experiment it is essential to have a rapid method for

assessing the diffraction data quality, just as described above

for the synchrotron-based raster scan.

The cctbx.spotfinder package was therefore extended to

process diffraction from the Coherent X-ray Imaging instru-

research papers

Acta Cryst. (2013). D69, 1274–1282 Sauter et al. � Data processing 1277

Figure 3
Concurrent processing of femtosecond crystallography data at LCLS with cctbx.xfel. A file-mediated approach is taken in which the data-acquisition
system multiplexes the detector images to several serial-access binary streams written in extended tagged container (XTC) format (a). For data analysis,
each of the six XTC files is assigned to a separate 12-core Linux node, on which the pyana framework reads the data within a single master process and
delegates the analysis of consecutive images to as many as 11 child processes. pyana provides a Python-language callback hook to be executed once for
each image, into which is inserted the cctbx spotfinder code. As the XTC file is on a shared-disk file system, data acquisition and processing are
performed simultaneously. Although processing lags behind acquisition for any given XTC file, the ‘run’ is switched after a few minutes to a new XTC
file, so the overall processing throughput roughly keeps up. (b) Bragg spot counts/image are shown for a 70 min 483 845-image thermolysin data set
(Sierra et al., 2012) broken into 12 runs starting at the indicated wall clock times. The hit rate (defined as the fraction of images with �16 Bragg spots
within a defined area) is plotted over a 5 s sliding window. The total number of hits is 15 094.

electronic reprint



ment (Boutet & Williams, 2010) at the LCLS, with images

acquired at 120 Hz using a Cornell-SLAC PAD detector

(Philipp et al., 2010). While the native data-acquisition (DAQ)

environment at this beamline can display images, the framing

rate is too high for per-frame visual inspection, so the DAQ

display is configured to sample only one tenth of the images

collected and to display a 1 s cumulative picture over many

frames. In parallel, the new software (designated cctbx.xfel)

separately quantifies every image from the full data stream

and displays summary statistics (Fig. 3) such as the number of

strong Bragg spots on each image and the hit rate (the number

of images that exceed a cutoff count during a sliding time

window). To implement the necessary multiprocessing and

access the data stream, cctbx.xfel interacts with pyana, a

Python/C++ data-processing framework developed by the

SLAC Photon Controls and Data Systems group. This

arrangement allows near-real-time Bragg spot analysis (Fig. 3)

by utilizing 100–150 cores on 64-bit 2.5 GHz Intel Xeon

processors.

4. Adapting the Python toolset for challenging
diffraction patterns

The high data-throughput rate is not the only outstanding

issue arising from the adoption of PAD-type detectors. The

nature of the data is also changing. Now that raster scanning is

readily implemented, one can anticipate data sets that probe

many positions within the sample loop, with some positions

producing high-quality diffraction spots and other positions

generating only marginal data. Similar comments can be made

about SFX protocols, in which the ensemble of diffraction

patterns is found to represent a spectrum of crystal qualities

and limiting resolutions.

As a specific example, consider the likelihood that

numerous data sets will reveal multiple lattices, since loop

scanning and liquid-jet sample delivery are expected to

produce some shots with more than one crystal in the beam.

Such a diffraction pattern from a recent synchrotron data set is

shown in Fig. 4. Multi-crystal indexing is now possible (Sauter

& Poon, 2010; Paithankar et al., 2011; Sørensen et al., 2012;

Powell et al., 2013) and data integration is straightforward with

standard programs, if one assumes that the Bragg spots do not

overlap. However, if one is to take proper account of the

fraction of spots that do actually overlap or lie close then new

integration methods are needed. Various approaches have

been discussed, ranging from the exclusion of overlapping

spots after the data have been integrated (Buts et al., 2004;

Paithankar et al., 2011) to the deconvolution of overlapping

spots at the time of integration (Bourgeois et al., 1998;

Schreurs et al., 2010).

The approach of Schreurs et al. (2010), in particular,

proposes the use of fine-grained models that interpret the

varying size and shape of Bragg spots on the image as arising

from physical properties of the experiment, such as beam

bandwidth and divergence, along with crystal size and

mosaicity. This strategy is promising not only for interpreting

diffraction from multiple lattices, but also in other cases where

the spot shape is extended or diffuse (Nave, 1998; Tsai et al.,

2009). It is likely that experimentation will be required to

arrive at the best model for any given data set. In support

of such work, Python scripting offers an easily adaptable

framework for experimentation, and two useful developments

are discussed in this section.

4.1. A graphics toolbox for new data-reduction methods

A Python-based image viewer for diffraction data has

recently been added to cctbx (Fig. 5a). This graphical user

interface (GUI), which relies on the cross-platform wxPython

toolkit (Rappin & Dunn, 2006), was inspired by other data

viewers such as adxv (Szebenyi et al., 1997), but is amenable

to subclassing to support new algorithm development. The

original publication (Echols et al., 2012) described the

program (phenix.image_viewer) as being included in the

PHENIX package; however, it is now also available under the

open-source cctbx license in both source-code and binary

forms.

Present efforts to extend data-reduction methods will rely

heavily on viewing the measured data compared with various

models, thus prompting the emphasis on developing a flexible

GUI. New code currently being prototyped (cctbx.image_

viewer) permits easy navigation through the data using mouse

click-and-drag motions to pan the image and mouse scroll-

wheel motions to zoom in and out, similar to the actions of the

popular web service Google Maps. An arbitrary number of

colored overlays can be added to the image, for example

research papers

1278 Sauter et al. � Data processing Acta Cryst. (2013). D69, 1274–1282

Figure 4
Indexing model from an exposure illuminating two lysozyme micro-
crystals collected at ALS beamline 5.0.1 using an ADSC Q315 detector.
Most reflections on the two lattices (yellow and green) are well separated,
but some come close enough to impinge on the integration box chosen for
modeling spots on the other lattice (a), while a few overlap outright (b).

electronic reprint



quadrilaterals and dots to represent various physical models

of the diffraction, aligned with the data image to subpixel

precision (Fig. 5b). Provision has been made to map the pixel

coordinates of the detector onto the laboratory coordinate

system, making it possible to represent PAD detectors

composed of numerous silicon tiles that may have relative tilt

and fractional pixel displacements. This same facility can be

readily adapted to cylindrical or spherical detectors. While the

mapping from detector to laboratory space consumes extra

CPU cycles, the response time is minimized by rendering only

the portion of the data that is currently being viewed at the

present zoom level, while caching ahead the neighboring tiles

to anticipate mouse-driven pans. The infrastructure for these

features, based on wxPython, was derived from the pySlip

project authored by Ross Wilson (http://code.google.com/p/

pyslip).

4.2. Python-mediated GPU computing

Graphics-processing units (GPUs) are a low-cost avenue

for accelerating commodity hardware for high-performance

computing and are extensively used in the computational

sciences (Hwu, 2011), yet only a few crystallographic appli-

cations have been reported (Favre-Nicolin et al., 2011;

Schnieders et al., 2011).

However, massively parallel GPU architecture has great

potential to assist in data reduction in two ways: either by

speeding up the workflow to keep pace with data acquisition

or by allowing the testing of more detailed models. GPU

computing power raises the possibility

of treating data reduction as an opti-

mization problem (Schreurs et al., 2010),

in which the structure factors are

treated as unknowns to be modeled

along with the experimental parameters

(bandwidth, divergence, crystal size and

mosaicity, as mentioned above), all of

which are adjusted to create the best

pixel-by-pixel fit between model and

observation.

In view of this, we examine the use of

GPUs to calculate structure factors

from atomic coordinates using direct

summation (Favre-Nicolin et al., 2011),

for the direct summation approach gives

a computational avenue for modeling

Bragg spots that are extended in size

and shape owing to crystal imperfec-

tions. The simulated pattern in Fig. 6(a)

is one such example, in which a fringe

function arises from the small number

of unit cells along each crystal axis; this

type of pattern was observed by

Chapman et al. (2011) for crystallites of

photosystem I. Another phenomenon

that may be amenable to such modeling

is lattice-translocation disorder, in

which successive crystal layers are randomly displaced,

producing Bragg spots that are streaked along one axis (Tsai et

al., 2009).

While porting an application to a GPU platform can

certainly be beneficial (Fig. 6b), there are also limitations,

which can be appreciated by considering in detail how the

direct summation is implemented. The macromolecular

structure factor FH is given by

FH ¼ P

�U

P

S

P

n

f nðd�
HÞ � wn � exp½2�iHðRxn þ T þ�UÞ�

� expð�2�2uiso;nd�2

H Þ; ð1Þ
where H is the Miller index, d�

H is its associated reciprocal-

lattice spacing, fn is the atomic form factor of the nth scatterer

with fractional coordinates xn, uiso,n is the isotropic displace-

ment parameter, wn the occupancy factor, R and T are the

rotation and translation parts, respectively, of the symmetry

operations S of the space group, and the operators �U span all

unit cells in the crystal. While it is typically more efficient in

macromolecular crystallography to estimate FH by fast Fourier

transformation of the electron density, the direct summation in

(1) is the appropriate expression for computing diffraction at

fractional values of the Miller indices in crystallites with a

small number of unit cells or cell-to-cell disorder. (1) reduces

to the continuum scattering expression when there is just one

unit cell. We implemented (1) on Nvidia GPUs containing

either 448 or 960 hardware cores (Fig. 6). Our version differs

from the previous implementation (Favre-Nicolin et al., 2011)

in allowing symmetry operations and isotropic displacement

research papers

Acta Cryst. (2013). D69, 1274–1282 Sauter et al. � Data processing 1279

Figure 5
(a) Cross-platform wxPython-based phenix.image_viewer application included in cctbx. (b) Detail of
the prototype cctbx.image_viewer, which exposes a programming interface for displaying models.
Here, the red box and blue dot are alternate models of the Bragg diffraction recorded on a PAD
detector; the models have not been optimized and thus differ substantially from the center position
of the observed Bragg spot (green dot).

electronic reprint



parameters. It is also tightly integrated with native cctbx data

types, permitting a simple Python script to read in a PDB file

with the standard cctbx toolset and to then immediately

calculate direct-summation structure factors on attached GPU

hardware. The kernel code that executes on the GPU is <150

lines written in Nvidia’s CUDA language, which is similar to C.

The calculation is organized such that each FH is evaluated

by a separate thread.3 In contrast to the situation for general-

purpose CPUs, which automatically use the on-die cache to

speed up data access, the GPU interface places responsibility

for data transfer directly on the programmer. Data transferred

from the CPU host to the GPU device can have two initial

destinations. Firstly, there is a small block (64 KB) of constant

memory that is rapidly readable by the GPU threads, which is

useful in our case for atomic form factor Gaussian coefficients

and symmetry operators S. Secondly, there is ample global

memory (3 GB) to store all the fractional atomic coordinates

xn, along with the output list of FH prior to its return transfer

to the host. The GPU parallelizes its work with a single-

instruction multiple-thread model (Kirk & Hwu, 2010) in

which blocks of 32 threads execute instructions in lockstep.

Thread blocks have access to only a tiny amount (48 KB) of

on-die shared memory; this poses a memory-management

challenge since the atomic coordinates must ultimately be

transferred on-die for the calculation. We make this efficient

by having the 32-thread blocks coalesce. Each thread reads

coordinates for a single atom; thus, 32 atomic coordinates are

read simultaneously by synchronized threads and each data

element can be used by each of the 32 threads before it is

replaced in the next data-transfer cycle. By minimizing the

number of global-to-shared memory transfers in this way, we

are able to simulate a fringe pattern for a 10 � 12 � 14

unit-cell crystallite of photosystem I in under 2 min (Fig. 6a).

The calculation is 200-fold faster than the equivalent double-

precision performance on a single-process CPU (Fig. 6b).

This short description shows that algorithms must inevitably

be refactored to make optimal use of the hardware resources

of the GPU. Owing to this extra effort, it is only beneficial to

focus on small sections of the problem (such as the structure-

factor formula) that are truly rate-limiting, while performing

the balance of the calculation on the CPU. Furthermore, it is

critical to choose the correct programming pattern for paral-

lelizing the algorithm (Owens et al., 2007). In our example,

each thread was chosen to represent one structure factor and

we were able to use data-transfer coalescence to efficiently

gather all the atomic coordinate inputs into each thread. The

alternate choice, which would be unproductive, is to use

threads to represent the contribution of individual atoms. In

this pattern, each thread scatters its numerical results across

all of the output channels (the structure factors); however, this

is extremely inefficient because a global lock must be placed

around the output variable each time a thread adds its

contribution. While we have not yet used GPUs for routine

diffraction data reduction, it is interesting to speculate how

these lessons would apply to data modeling. For example,

when emulating recently described ray-tracing approaches

(Diederichs, 2009; Schreurs et al., 2010) we may benefit from

mapping threads to individual detector pixels, which would

gather the ray-tracing contributions from an ensemble of input

optical rays.

research papers

1280 Sauter et al. � Data processing Acta Cryst. (2013). D69, 1274–1282

Figure 6
(a) Low-order fringe pattern for a photosystem I crystallite calculated on a GPU and similar to that actually observed at the LCLS (Chapman et al.,
2011). (b) Computational efficiency of evaluating (1) scaling as N2 (number of atoms � number of structure factors). The CPU calculation was
performed single-threaded on a 64-bit Intel Xeon (2.4 GHz), 8 MB cache, 23.5 GB RAM running Scientific Linux 5.4 with code compiled under GCC
4.4.2. GPU calculations were either on an Nvidia C1060 (Tesla, 1.30 GHz), 4.0 GB on-device memory, 960 hardware cores or on the higher-performance
Nvidia C2050 (Fermi, 1.15 GHz), 2.6 GB on-device memory, 448 hardware cores; both were programmed in CUDA. The top plot (blue crosses) depicts
calculations run with 32-bit (single) precision; otherwise, calculations were in 64-bit (double) precision. A comparison is given with the FFT method,
which scales as N log N. The loss of accuracy observed on moving from 64-bit to 32-bit precision is generally less than the loss of accuracy (typically 0.8%)
resulting from use of the FFT approximation rather than (1). Example code is available at http://cctbx.svn.sourceforge.net/viewvc/cctbx/trunk/cctbx/
x-ray/structure_factors/from_scatterers_direct_parallel.py. Python bindings for CUDA utilize the PyCUDA package (Klöckner et al., 2012). Benchmarks
in (b) are performed on a single unit cell in space group P1, while the simulation in (a) is over all atoms in 10 � 12 � 14 unit cells in space group P63.
Simulation (a) scales as N2 as it uses (1).

3 The kernel, encoding the computation for one thread, calculates a single FH.

electronic reprint



5. Availability

The software described here is available in source and binary

distributions at http://cctbx.sf.net under a permissive BSD-like

open-source license that allows unrestricted academic or

commercial reuse. Contributions of new code can be arranged

with the authors. Where possible, the binary downloads have

been bundled with the supporting packages described in the

text.

NKS and JH were supported by National Institutes of

Health/National Institute of General Medical Sciences grants

1R01GM095887 and 1R01GM102520, as well as by the

Director, Office of Science, Department of Energy under

Contract DE-AC02-05CH11231. RWG-K and NE were

supported by NIH/NIGMS grant 1P01GM063210 to Paul

Adams (LBNL), which also supports the broad development

of cctbx. We are grateful to the Photon Controls and Data

Systems group at SLAC National Accelerator Laboratory,

which provided the pyana software (x3.2) for LCLS data

processing. GPU benchmarks (x4.2) were performed on the

Dirac cluster at the National Energy Research Scientific

Computing Center, also supported by the Office of Science,

Department of Energy under Contract DE-AC02-05CH11231.

For useful discussion and feedback, we thank our numerous

collaborators, including Paul Adams, Jan Kern, Vittal

Yachandra and Junko Yano (Lawrence Berkeley National

Laboratory), Uwe Bergmann (SLAC National Accelerator

Laboratory), Gwyndaf Evans and Graeme Winter (Diamond

Light Source) and David Waterman (CCP4). The data in Fig. 4

were collected by Peter Zwart (LBNL).

References

Abrahams, D. & Grosse-Kunstleve, R. W. (2003). C/C++ Users J. 21,
29–36.

Adams, P. D. et al. (2010). Acta Cryst. D66, 213–221.
Aishima, J., Owen, R. L., Axford, D., Shepherd, E., Winter, G., Levik,

K., Gibbons, P., Ashton, A. & Evans, G. (2010). Acta Cryst. D66,
1032–1035.

Arya, S., Mount, D. M., Netanyahu, N. S., Silverman, R. & Wu, A. Y.
(1998). J. Assoc. Comput. Mach. 45, 891–923.

Barty, A. et al. (2012). Nature Photonics 6, 35–40.
Bernstein, H. J. & Ellis, P. J. (2005). International Tables for

Crystallography, Vol. G, edited by S. R. Hall & B. McMahon, pp.
37–43. Heidelberg: Springer.

Bourgeois, D., Nurizzo, D., Kahn, R. & Cambillau, C. (1998). J. Appl.
Cryst. 31, 22–35.

Bourhis, L. J., Grosse-Kunstleve, R. W. & Adams, P. D. (2007). IUCr
Comput. Comm. Newsl. 8, 74–80.

Boutet, S. & Williams, G. J. (2010). New J. Phys. 12, 035024.
Bowler, M. W., Guijarro, M., Petitdemange, S., Baker, I., Svensson,

O., Burghammer, M., Mueller-Dieckmann, C., Gordon, E. J., Flot,
D., McSweeney, S. M. & Leonard, G. A. (2010). Acta Cryst. D66,
855–864.

Buts, L., Dao-Thi, M.-H., Wyns, L. & Loris, R. (2004). Acta Cryst.
D60, 983–984.

Chapman, H. N. et al. (2011). Nature (London), 470, 73–77.
Cherezov, V., Hanson, M. A., Griffith, M. T., Hilgart, M. C., Sanishvili,

R., Nagarajan, V., Stepanov, S., Fischetti, R. F., Kuhn, P. & Stevens,
R. C. (2009). J. R. Soc. Interface, 6, S587–S597.

Collins-Sussman, B., Fitzpatrick, B. W. & Pilato, C. M. (2008).
Version Control with Subversion. For Subversion 1.5. http://
svnbook.red-bean.com/en/1.5/svn-book.pdf.

Cowtan, K. (2003). IUCr Comput. Comm. Newsl. 2, 4–9.
DePonte, D. P., Weierstall, U., Schmidt, K., Warner, J., Starodub, D.,

Spence, J. C. H. & Doak, R. B. (2008). J. Phys. D Appl. Phys. 41,
195505.

Diederichs, K. (2009). Acta Cryst. D65, 535–542.
Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. &

Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
Echols, N., Hattne, J., Gildea, R. J., Adams, P. D. & Sauter, N. K.

(2012). Comput. Crystallogr. Newsl. 3, 14–17.
Eikenberry, E. F., Brönnimann, C., Hülsen, G., Toyokawa, H.,

Horisberger, R., Schmitt, B., Schulze-Briese, C. & Tomizaki, T.
(2003). Nucl. Instrum. Methods Phys. Res. A, 501, 260–266.

Evans, P. (2006). Acta Cryst. D62, 72–82.
Favre-Nicolin, V., Coraux, J., Richard, M.-I. & Renevier, H. (2011). J.

Appl. Cryst. 44, 635–640.
González, A., Moorhead, P., McPhillips, S. E., Song, J., Sharp, K.,

Taylor, J. R., Adams, P. D., Sauter, N. K. & Soltis, S. M. (2008). J.
Appl. Cryst. 41, 176–184.

Grosse-Kunstleve, R. W., Sauter, N. K., Moriarty, N. W. & Adams,
P. D. (2002). J. Appl. Cryst. 35, 126–136.

Hilgart, M. C., Sanishvili, R., Ogata, C. M., Becker, M., Venugopalan,
N., Stepanov, S., Makarov, O., Smith, J. L. & Fischetti, R. F. (2011).
J. Synchrotron Rad. 18, 717–722.

Hwu, W.-M. W. (2011). GPU Computing Gems: Emerald Edition.
Burlington: Elsevier.

Incardona, M.-F., Bourenkov, G. P., Levik, K., Pieritz, R. A., Popov,
A. N. & Svensson, O. (2009). J. Synchrotron Rad. 16, 872–879.

Johansson, L. C. et al. (2012). Nature Methods, 9, 263–265.
Kern, J. et al. (2012). Proc. Natl Acad. Sci. USA, 109, 9721–9726.
Kirian, R. A., Wang, X., Weierstall, U., Schmidt, K. E., Spence,

J. C. H., Hunter, M., Fromme, P., White, T., Chapman, H. N. &
Holton, J. (2010). Opt. Express, 18, 5713–5723.

Kirian, R. A., White, T. A., Holton, J. M., Chapman, H. N., Fromme,
P., Barty, A., Lomb, L., Aquila, A., Maia, F. R. N. C., Martin, A. V.,
Fromme, R., Wang, X., Hunter, M. S., Schmidt, K. E. & Spence,
J. C. H. (2011). Acta Cryst. A67, 131–140.

Kirk, D. B. & Hwu, W.-M. W. (2010). Programming Massively Parallel
Processors: A Hands-on Approach. Burlington: Elsevier.

Klöckner, A., Pinto, N., Lee, Y., Catanzaro, B., Ivanov, P. & Fasih, A.
(2012). Parallel Comput. 38, 157–174.

Koopmann, R. et al. (2012). Nature Methods, 9, 259–262.
Lomb, L. et al. (2011). Phys. Rev. B, 84, 214111.
McPhillips, T. M., McPhillips, S. E., Chiu, H.-J., Cohen, A. E., Deacon,

A. M., Ellis, P. J., Garman, E., Gonzalez, A., Sauter, N. K.,
Phizackerley, R. P., Soltis, S. M. & Kuhn, P. (2002). J. Synchrotron
Rad. 9, 401–406.

Nave, C. (1998). Acta Cryst. D54, 848–853.
Owens, J. D., Luebke, D., Govindaraju, N., Harris, M., Krüger, J.,

Lefohn, A. E. & Purcell, T. J. (2007). Comput. Graph. Forum, 26,
80–113.

Paithankar, K. S., Sørensen, H. O., Wright, J. P., Schmidt, S., Poulsen,
H. F. & Garman, E. F. (2011). Acta Cryst. D67, 608–618.

Philipp, H. T., Koerner, L. J., Hromalik, M. S., Tate, M. W. & Gruner,
S. M. (2010). IEEE Trans. Nucl. Sci. 57, 3795–3799.

Powell, H. R., Johnson, O. & Leslie, A. G. W. (2013). Acta Cryst. D69,
1195–1203.

Rappin, N. & Dunn, R. (2006). wxPython in Action. Shelter Island:
Manning.

Sauter, N. K. (2010). Comput. Crystallogr. Newsl. 1, 18–23.
Sauter, N. K. (2011). Comput. Crystallogr. Newsl. 2, 93.
Sauter, N. K., Grosse-Kunstleve, R. W. & Adams, P. D. (2004). J. Appl.

Cryst. 37, 399–409.
Sauter, N. K. & Poon, B. K. (2010). J. Appl. Cryst. 43, 611–616.
Schnieders, M. J., Fenn, T. D. & Pande, V. S. (2011). J. Chem. Theory

Comput. 7, 1141–1156.

research papers

Acta Cryst. (2013). D69, 1274–1282 Sauter et al. � Data processing 1281
electronic reprint



Schreurs, A. M. M., Xian, X. & Kroon-Batenburg, L. M. J. (2010). J.
Appl. Cryst. 43, 70–82.

Sierra, R. G. et al. (2012). Acta Cryst. D68, 1584–1587.
Soltis, S. M. et al. (2008). Acta Cryst. D64, 1210–1221.
Song, J., Mathew, D., Jacob, S. A., Corbett, L., Moorhead, P. & Soltis,

S. M. (2007). J. Synchrotron Rad. 14, 191–195.
Sørensen, H. O., Schmidt, S., Wright, J. P., Vaughan, G. B. M., Techert,

S., Garman, E. F., Oddershede, J., Davaasambu, J., Paithankar,
K. S., Gundlach, C. & Poulsen, H. F. (2012). Z. Kristallogr. 227,
63–78.

Stepanov, S., Makarov, O., Hilgart, M., Pothineni, S. B., Urakhchin,
A., Devarapalli, S., Yoder, D., Becker, M., Ogata, C., Sanishvili, R.,
Venugopalan, N., Smith, J. L. & Fischetti, R. F. (2011). Acta Cryst.
D67, 176–188.

Strüder, L. et al. (2010). Nucl. Instrum. Methods Phys. Res. A, 614,
483–496.

Szebenyi, D. M. E., Arvai, A., Ealick, S., LaIuppa, J. M. & Nielsen, C.
(1997). J. Synchrotron Rad. 4, 128–135.

Trubetskoy, G. (2007). mod_python Manual. http://www.modpython.org.
Tsai, Y., Sawaya, M. R. & Yeates, T. O. (2009). Acta Cryst. D65,

980–988.
White, T. A., Kirian, R. A., Martin, A. V., Aquila, A., Nass, K., Barty,

A. & Chapman, H. N. (2012). J. Appl. Cryst. 45, 335–341.
Winn, M. D., Ashton, A. W., Briggs, P. J., Ballard, C. C. & Patel, P.

(2002). Acta Cryst. D58, 1929–1936.
Winn, M. D. et al. (2011). Acta Cryst. D67, 235–242.
Winter, G. (2010). J. Appl. Cryst. 43, 186–190.
Winter, G. & McAuley, K. E. (2011). Methods, 55, 81–93.
Yamada, Y., pHonda, N., Matsugaki, N., Igarashi, N., Hiraki, M. &

Wakatsuki, S. (2008). J. Synchrotron Rad. 15, 296–299.
Yano, J., Kern, J., Irrgang, K.-D., Latimer, M. J., Bergmann, U.,

Glatzel, P., Pushkar, Y., Biesiadka, J., Loll, B., Sauer, K., Messinger,
J., Zouni, A. & Yachandra, V. K. (2005). Proc. Natl Acad. Sci. USA,
102, 12047–12052.

Zhang, Z., Sauter, N. K., van den Bedem, H., Snell, G. & Deacon,
A. M. (2006). J. Appl. Cryst. 39, 112–119.

research papers

1282 Sauter et al. � Data processing Acta Cryst. (2013). D69, 1274–1282

electronic reprint


