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Constructing a model lattice to fit the observed Bragg diffraction pattern is

straightforward for perfect samples, but indexing can be challenging when

artifacts are present, such as poorly shaped spots, split crystals giving multiple

closely aligned lattices and outright superposition of patterns from aggregated

microcrystals. To optimize the lattice model against marginal data, refinement

can be performed using a subset of the observations from which the poorly

fitting spots have been discarded. Outliers are identified by assuming a Gaussian

error distribution for the best-fitting spots and points diverging from this

distribution are culled. The set of remaining observations produces a superior

lattice model, while the rejected observations can be used to identify a second

crystal lattice, if one is present. The prevalence of outliers provides a potentially

useful measure of sample quality. The described procedures are implemented

for macromolecular crystallography within the autoindexing program

labelit.index (http://cci.lbl.gov/labelit).

1. Introduction

‘How good is this sample?’ and ‘How well does the model fit

the data?’ are pertinent questions throughout the process of

structure solution, driving critical experimental decisions even

at the initial step of eliciting the crystal lattice from the raw

diffraction image. Algorithms for determining and refining the

lattice description are well understood, and are implemented

by many data-processing packages such as MOSFLM (Leslie,

1999), HKL (Otwinowski & Minor, 1997), XDS (Kabsch,

2010a,b) and d*TREK (Pflugrath, 1999). Generally, candidate

Bragg spots are selected from the diffraction image and their

observed laboratory coordinates are converted into reciprocal

space by an appropriate geometric construction (Arndt &

Wonacott, 1977; reviewed by Dauter, 1999). Lattice periodi-

city is detected by one of several autoindexing procedures (e.g.

Steller et al., 1997), leading to a lattice

model with nine degrees of freedom:

three unit-cell lengths, three unit-cell

angles and three librations of the

lattice with respect to the laboratory

axes (Fig. 1a). The predictive power of

the lattice model makes accurate data

integration possible; in particular, it is

used to deduce image coordinates for

all of the reflections (Rossmann & van

Beek, 1999), even those with a low

intensity level that would not otherwise

be distinguishable from the back-

ground level.

The unit-cell model, or rather seven

of its nine degrees of freedom (cell

lengths, cell angles and libration about

the z axis or direction of incident

X-rays) are readily optimized, since

they produce direct changes in the

expected Bragg spot positions. By

comparing the predicted and observed

Bragg positions, a best-fit model can be

Figure 1
Protocol for outlier detection. (a) Data-acquisition geometry, showing librations of the crystal about
the incident beam (z axis) and goniometer rotation axis (y axis). (b) Computational procedure
showing steps that are executed within the program labelit.index. New outlier detection steps
developed in this paper are indicated by an asterisk (*) and the alternative pathway for indexing the
second lattice (if one is present) is indicated by a dagger symbol (†).
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obtained by least-squares refinement. High-accuracy refine-

ments of librations about the x and y axes are outside the

scope of this paper, as small rotations about these axes do not

produce first-order changes in the expected spot positions. The

accepted approach in this regard is to integrate the Bragg

intensities over a full or partial data set, giving spot-intensity

profiles over a sequence of y rotations. These profiles deter-

mine high-accuracy x- and y-rotational orientations through a

post-refinement algorithm (Rossmann et al., 1979; Winkler et

al., 1979), and the resulting lattice model is then used as the

basis for a second, more accurate, round of integration.

This paper focuses only on what is achievable with the

observed center-of-mass spot positions from the best-

measured spots (Fig. 2a). There is good reason to emphasize

this initial characterization of raw images (prior to data

reduction), since high-throughput crystal screening is relied

upon increasingly to identify the best crystalline samples prior

to the collection of full data sets. Crystal screening, which is

now a standard option at many synchroton beamlines (Soltis et

al., 2008), examines numerous samples sequentially under

robotic control. A typical protocol involves the collection of

two diffraction patterns spaced 90� apart on the y-rotational

axis, which is enough data to gain a general understanding of

the quality of the sample. Software server frameworks such as

Web-Ice (González et al., 2008) or EDNA (Incardona et al.,

2009) execute autoindexing trials for each crystal, generating a

summary report that lists characteristics such as the signal

strength and limiting resolution. One important quality

measure is the r.m.s. deviation (in laboratory space) between

the observed and predicted positions of the best-measured

spots. Even in the absence of post-refinement, the lattice

model ought to predict spot positions with sub-pixel accuracy,

so in the best cases the r.m.s. spot displacement is expected to

be less than the CCD pixel size, typically about 100 mm.

In less favorable cases, it is challenging to refine the lattice

model in a well behaved manner. If the operative method is to

minimize the variance �2
r between observed spot centroids robs

and predicted spot positions rcalc for the N best-measured

spots,

�2
r ¼

PN
i¼1

rhi;obs � rhi;calc

� �2

N
� �r2

� �
; ð1Þ

then one must check the implicit assumption that the obser-

vations have been paired with the correct Miller index hi. This

assumption breaks down for many experimental samples

where Miller indices are difficult or impossible to assign. One

example is seen in Fig. 2, where the lattice may be modulated

(Wagner & Schönleber, 2009), generating satellite spots and

streaks that are spaced along the c* axis. Another problematic

phenomenon (x3) is the superposition of multiple lattices,

which requires a decision as to which spots to associate with a

given lattice model. Clearly, in these cases, the assignment of

observations to the wrong Miller index will artificially inflate

the r.m.s. deviation value [which is �r in equation (1)].

Moreover, the refined lattice model will be biased by the

outliers, thus degrading any crystal quality measures that

depend on an accurate knowledge of the lattice (including the

signal strength and limiting resolution). Here we develop a

simple statistical test to decide, automatically, which obser-

vations should be included in equation (1) and which should

be rejected as outliers, thus improving the general computa-

tional outcome.

2. Computational methods

Raw diffraction images for a number of published protein

structures were downloaded from the Joint Center for Struc-

tural Genomics (JCSG; http://www.jcsg.org) to be used as test

cases. Images from hen egg-white lysozyme containing

superimposed lattices from two crystals were obtained by

Peter Zwart at Beamline 5.0.1 of the Advanced Light Source

at Berkeley. Software development was greatly facilitated by

the framework provided by the open-source Computational

Crystallography Toolbox (cctbx; Grosse-Kunstleve et al.,

2002).

Raw data are analyzed with a spot-finding program

(DISTL; Zhang et al., 2006), with a view to eliminating various

types of signal artifacts prior to any further analysis. The rules

applied (determined by trial and error) have been described

elsewhere (Sauter et al., 2004; Sauter & Zwart, 2009) and are

only briefly repeated here. Spots are retained for analysis only

if they have smooth profiles that are well separated from their

neighbors. Falloff of the spot count as a function of resolution

is used to determine conservative outer- and inner-resolution

cutoffs. Additional filters reject spots that are unusually
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Figure 2
Detail of the 1� rotation image used for analyzing outliers for Protein
Data Bank (PDB) entry 1vk8. (a) Red circles are the candidate Bragg
spots accepted for the initial lattice refinement, after two rounds of
heuristic spot filters. Spot intensity is one criterion for accepting these
candidate observations, but other characteristics have disqualifed many
of the brightest Bragg spots in this case. Specifically, the heuristic rules
select signals for which the centroids are extremely well measured,
namely round sharp spot profiles that are baseline-separated from
neighboring signals. Thus, the Bragg signals exhibiting satellite spots and
streaks oriented along the vertical c*-axis direction are excluded from
refinement. (b) Yellow boxes show the predicted Bragg positions on the
initially refined lattice model. Observations have been recolored to
indicate their status with respect to this predicted lattice. Red dots
represent the 40% of spots closest to their predicted positions, used for
determining the Rayleigh distribution � in Fig. 3(c). Pink spots are those
determined to be outliers by the statistical test [equation (6)], very much
in agreement with the visual impression. Orange dots are the remaining
observations.

electronic reprint



intense, large or small in pixel area, or skewed in shape. Spots

are ignored if they are too close to the rotation spindle for

accurate positional evaluation.

Further analysis is performed on the spots once the tenta-

tive lattice model is established by autoindexing. A formula

given previously [equation (8) of Sauter et al. (2004)] converts

an observed spot position r to a real-valued Miller index f, the

components of which are rounded off to produce the likely

integer-valued Miller index h. Index h is not always well

defined for a rotation photograph; the rotation of the sample

about the y axis (typically anywhere from 0.1 to 1.0�) may

produce differing h values for a particular r position at the

beginning and end of the rotation, in which case the observed

spot is removed from consideration. The difference f � h is

expected to have small fractional components. Conversely,

large component values may indicate an outlier. Indeed, we

are able to filter out ice-ring artifacts by detecting peaks in a

plot of |f � h| versus resolution, usefully supplementing the

detection of ice rings by additional plots of background-

corrected pixel intensities and number of candidate spots

versus resolution. Yet despite all this attention to heuristics for

classifying outliers, there are still numerous examples of

undetected split spots, fragmented ice rings and superimposed

lattices that work their way into the target function

[equation (1)] for optimizing the lattice model.

We therefore resort to statistical assumptions to help sort

the spots. Two populations are posited, a collection of outliers

that do not fit the lattice model, and a normally distributed

collection of lattice spots that fit the model, albeit with some

uncertainty. The normally distributed lattice spots are taken to

deviate from their predicted positions in the plane of the

detector with a Gaussian probability distribution in each

coordinate, x and y. We make the further simplifying

assumptions that the individual coordinate deviations �x and

�y (Fig. 3a) are uncorrelated and that their variances are

equal (�2
x ¼ �2

y). This permits the total deviation between the

observed and predicted positions,

�r ¼ �x2 þ�y2
� �1=2

; ð2Þ

to be modeled with a Rayleigh probability distribution (which

may be thought of as an extension of the Gaussian distribution

into two dimensions),

Pð�rÞ ¼ �r

�2
exp ��r2

2�2

� �
; ð3Þ

where �2 = �2
x = �2

y = �2
r =2.

With this framework in place, the goal now is to separate

observations that do and do not appear to fit a Rayleigh

distribution. The total group of N observations is sorted in

order of increasing �r (Fig. 3c), indexed by the symbol k (k =

0, 1, . . . , N� 1). A useful tool for interpreting this series is the

cumulative distribution function, or probability that an

observation will have a �r lower than a given value,

�ð�rÞ ¼
Z�r

0

PðzÞ dz ¼ 1 � exp ��r2

2�2

� �
: ð4Þ

It is assumed that the spots with the smallest �r values will

form a safe group (with no outliers) from which to model the

variance in this equation. We therefore take a reasonable

subset (40% of the well measured spots with the lowest �r;

see below) and optimize the value of � by least-squares

minimization of a function f that characterizes the vertical

difference between the observed and calculated cumulative

distribution curves in Fig. 3(c),

f ¼
X
k

�obs ��calc

� 	2 ¼
X
k

2kþ 1

2N
��calc �rkð Þ


 �2

: ð5Þ

In this equation, the observed distribution function �obs is just

a straight-line function, (2k + 1)/2N, that spreads the obser-

vations along the vertical axis of Fig. 3(c), while the calculated

distribution function �calc is equation (4) evaluated at the �r

position of the kth observation. Modeling the variance with

equation (5) is expected to be superior to using equation (1),

since we are fairly confident that equation (5) samples only the

variation of spots that truly belong to the lattice, and not the
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Figure 3
Analysis of 1vk8 outliers. (a) and (b) are scatter plots of the deviation
between observed and predicted Bragg spot positions for (a) the initially
refined lattice model and (b) the re-refined lattice model after outlier
rejection. The blue circles in (a) and (b) are the expected limits that
should contain 95% of the spots, based on the Rayleigh distributions
modeled in (c) and (d), respectively. (c) and (d) are cumulative
distribution functions (blue curves) calculated on the subset of
observations (red dots) containing the 40% of spots with the smallest
values of �r. Pink dots represent outliers with �r values more than �
away from the expected curve (green bar). The outliers have been
removed in the second refinement round shown in (b) and (d). Orange
dots are the remaining observations.
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outliers that may be present in the total ensemble of N spots.

With the cumulative distribution function [equation (4)] now

established, it is possible to define an outlier as an observation

for which �r is too far away from the idealized curve of

equation (4). A good cutoff is a distance of � [represented by

the green bar in Fig. 3(c)], i.e. spots are classified as outliers

when

�rk � �2�2 ln 1 � 2kþ 1

2N

� �
 �1=2

>�: ð6Þ

It is important to understand that this cutoff criterion does not

penalize observations that depart from the mean by many

standard deviations. For example, if the sample size is extre-

mely large it would be perfectly acceptable for a non-outlying

spot to have �r = 6�. Rather than impose an arbitrary �
cutoff, outliers are identified when the incidence of high �r

values exceeds that expected from a Rayleigh distribution.

This approach accounts for the sample size in a natural way, as

others have done in different contexts (Read, 1999; Zwart et

al., 2005).

The statistical model for outlier rejection is applied imme-

diately after autoindexing at the computational stage (Fig. 1b)

where the lattice model is still expressed as a triclinic cell.

Subsequent to outlier rejection, the model is re-refined [again

based on the target function in equation (1)] and the cell is

analyzed to discover the possible Bravais types (Sauter et al.,

2006) prior to data integration.

3. Results

To assess the lattice quality from a variety

of crystal samples, 22 protein structures

were selected from the JCSG data archive,

spanning a wide subset of Bravais types.

As indicated in Table 1, diffraction prop-

erties such as limiting resolution varied

over a considerable range, as did the

experimental conditions such as the width

of the rotation angle (not shown). Lattice

deviation statistics computed from one

rotation image in each data set (generally

the first image) reveal a broad spectrum of

sample qualities, with one sample (3bgu)

exhibiting a second lattice and two others

presenting Bragg spots that are split in

half (1vr8) or streaked in long rows (1vk8;

Fig. 2). Separately, a test image from a

lysozyme sample containing two lattices

was analyzed (Fig. 4).

Each diffraction pattern was auto-

indexed with LABELIT (Sauter et al.,

2004) and the resulting lattice refined

based on its agreement with the center-of-

mass positions of the N best-candidate

Bragg spots [equation (1)]. Our procedure

for rejecting outliers is illustrated in Fig. 3

for the 1vk8 diffraction pattern. Fig. 3(a)

plots the �x and �y deviations of the observed spots from

their predicted positions, although the outliers that are several

millimeters away from the nearest expected lattice point

(Fig. 2b) are beyond the extent of this graph. The ordered

sequence of �r values is shown in Fig. 3(c), along with the

best-fit cumulative distribution function [�(�r), blue curve]
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Table 1
Improvement of the lattice model after outlier rejection.

Results shown here represent the analysis of a single rotation image. �r is the r.m.s. difference between
observed and predicted spot positions as defined in equation (1). � is a standard deviation fitted to the
40% of observations (before outlier rejection) that are closest to their corresponding predicted
positions, as illustrated in Fig. 3(c).

PDB
code

Published
space
group

Limiting
resolution
(Å) N

�r before
outlier
rejection
(mm)

�r after
outlier
rejection
(mm)

� before
outlier
rejection
(mm)

Number
of
outliers
(%)

Severity
of
outliers
(�)

�r on the
second
lattice (mm)

1vkk P1 1.4 205 388 102 73 7.8 15.7
1zcz P1 2.1 272 268 103 85 2.6 10.2
1vk8 P1 2.1 218 927 220 225 20.2 81.8 Streaky spots
2rh0 P1 3.2 95 529 206 198 9.5 12.7
3bgu P2 1.8 207 887 66 89 34.3 85.7 586
1vkh P21 1.9 280 266 115 82 7.5 14.0
1vm6 C2 3.1 247 338 56 56 8.5 17.0
1vl7 P21212 1.9 278 76 72 46 0.7 0.5
1vph P212121 2.0 357 221 113 84 7.0 12.9
1vl1 C2221 2.0 260 118 57 41 18.5 10.3
1z9f F222 2.7 137 131 131 80 0.0 0.0
1vky I222 2.5 273 136 124 83 2.6 2.5
3b77 P4 3.2 296 61 29 22 16.6 5.8
1vrd I4 3.6 231 149 91 68 16.0 10.7
1o3u P41212 2.0 290 150 91 73 1.7 3.8
2ax3 I422 2.8 274 104 97 71 0.4 0.3
1vr7 R3: H 1.6 290 150 82 63 3.1 5.8
1vr8 P3221 2.1 246 362 109 85 23.6 33.3 Split spots
2pfx P63 1.8 459 117 71 56 5.2 7.8
2r6v P6122 1.5 299 116 74 59 3.0 3.8
1vmd I23 2.9 266 140 121 80 2.3 2.5
1vlv F432 2.7 362 56 48 33 3.3 1.8
Lysozyme P43212 1.9 175 586 100 119 30.3 49.3 321

Figure 4
Indexing of two superimposed lysozyme diffraction patterns. (a) The
primary lattice model (yellow boxes) after an initial round of refinement,
where colored dots represent the spots included in the lattice refinement.
Color coding is the same as used in Figs. 2 and 3. Red spots are the subset
safely considered to be part of the primary lattice, while pink spots are the
outliers identified by equation (6) (consistent with the visual impression).
(b) The lattice that results from a second round of autoindexing using
only the pink-coded outliers as data. Spot color codes are the same as in
(a). The new lattice in (b) is clearly consistent with the pink (outlying)
observations.
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which is modeled on the 40% of observations with the lowest

�r values (red spots). In all cases examined, choosing the best-

conforming subset of Bragg spots in this manner shows that

the errors in the spot positions are described reasonably well

by a Rayleigh distribution [equations (3) and (4)]. The

modeled parameter describing the distribution (�) is not very

sensitive to the exact fraction of spots included; comparable

results are obtained upon inclusion of anywhere from 25 to

55% of the spots. A command-line option was added to

labelit.index to set this parameter (see x4).

In the case of sample 1vk8, a full 80% of the chosen spots

coincide with the Rayleigh distribution (blue line, Fig. 3c),

while the remaining observations (those above the green

cutoff line) depart markedly from this ideal. These are inter-

preted as outliers, and are thus removed from the list of

observations. Another round of lattice refinement ensues, this

time producing �x and �y deviations with a much tighter

distribution about the model (Fig. 3b). Also, an ordered plot

of �r values shows that the entire set of remaining observa-

tions adheres extremely well to a Rayleigh distribution

(Fig. 3d). The improvement in the model is not confined to the

1vk8 case; indeed, the r.m.s. deviation between model and

experiment (�r) decreases after a second round of model

refinement, sometimes dramatically, in every instance where

outliers are rejected (Table 1).

For the crystals containing two lattices (3bgu and lysozyme),

the initial lattice refinement target (for refining the predomi-

nant lattice) is contaminated with spot observations from the

second lattice. The r.m.s. spot deviations (887 and 586 mm,

respectively) are therefore exceptionally large. However, the

statistical rejection of outliers successfully removes these

observations, such that the second round of lattice refinement

produces much lower spot deviations (66 and 100 mm) that are

typical of single-crystal samples. Furthermore, the identifica-

tion of the outlying spots provides an opportunity to index the

second lattice: a separate round of autoindexing based on just

the outliers (Fig. 1b) produces good lattice models, although

the spot deviations of 586 and 321 mm are fairly high. The

significance of this result is that it is not necessary to deter-

mine manually which spots to identify with the second lattice

prior to autoindexing based on painstaking visual inspection.

The two superimposed lysozyme lattices discerned in this

manner are depicted in Fig. 4.

As explained in x1 above, the automated crystal-screening

experiments that are the intended focus of this paper often

rely on acquiring two images spaced 90� apart on the y-rota-

tional axis. We simulated such data sets by selecting widely

spaced images from the JCSG archive. Statistical rejection of

outliers from these two-image data sets (data not shown) did

not differ remarkably from the one-image trials listed in

Table 1, either in the ability to improve the model fit or the

ability to conform the remaining spots to a Rayleigh model.

Certain minor details did change when considering the two

images together, e.g. the additional lattice was not as

pronounced in the second 3bgu image and the spot splitting

was not as severe in the second 1vr8 image. In other data sets

such as 1vm6, the percentage of spots rejected as outliers

increased slightly, apparently because the lattice model proved

to be a better fit for one of the two images (data not shown).

4. Discussion

Within the crystal-screening paradigm, tens or hundreds of

similar crystal samples may be evaluated for optimal diffrac-

tion before one or two are selected for data collection (Page et

al., 2005). Automated software tools can facilitate this process

by providing measures of sample quality (such as the signal-to-

noise ratio, limiting resolution, r.m.s. deviation, mosaicity and

number of ice-ring artifacts) in real time as the data are

acquired. Except for the quantification of ice rings, these

standard quality measures focus on the diffracted lattice itself.

What have been lacking are reliable measures for the inter-

ference caused by non-lattice artifacts, which might degrade

the integration of the Bragg signal or the subtraction of

background, thus reducing the quality of the structure factors.

Two of the statistics presented in Table 1 appear to capture

this information. Firstly, the number of outliers (expressed as a

percentage of total Bragg spot candidates after ice rings have

been removed) measures the prevalence of signals that do not

belong to the canonical lattice. Secondly, the severity of the

outliers (computed as the Fig. 3c area bounded by the

observed spots, the blue curve and the green cutoff line, in

units of �) gauges how far the outliers are from the lattice.

High values of these measures in Table 1 correlate with the

visual recognition of stray spots in the 1vk8, 3bgu, 1vr8 and

lysozyme images. These statistics may therefore prove useful

for crystal screening in combination with the standard

measures mentioned above.

The new methods described here – statistical rejection of

outliers followed by re-refinement of the lattice model – have

been added to the default flowchart within the autoindexing

program labelit.index (Fig. 1b). Although the program

normally operates with image data as the only input, a few

command-line options have been added (described in the

online manual) for generating plots such as those shown in

Figs. 2–4, or for disabling outlier rejection altogether.

Presently, the indexing of a second lattice is not part of the

default procedure. Rather, it is intended that a high percen-

tage of outliers will alert the user to the possibility of a second

lattice, whereupon labelit.index may be run a second time with

a command-line flag set to follow the ‘additional lattice’

indexing path shown in Fig. 1(b).

The discovery of additional lattices performed here and

elsewhere (Buts et al., 2004) raises the question of how to

handle data reduction. Standard programs such as MOSFLM,

HKL, XDS and d*TREK treat only one lattice at a time, so

separate data-reduction runs will have to be performed to

integrate the Bragg signals from each lattice. Care must be

taken with pairs of reflections from different lattices that

either overlap or come close enough such that the background

subtraction performed for one lattice is biased by the Bragg

signal from another lattice. One approach, implemented in the

program UNTANGLE (Buts et al., 2004), is to enumerate and

reject problematic pairs of reflections before the data sets are
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merged together. Other programs such as PROW (Bourgeois

et al., 1998) and EVAL15 (Schreurs et al., 2010) preserve the

information that is present in near or overlapping signals by

jointly integrating and deconvoluting the neighboring spots.

The need for software tools to analyze multiple lattices is

likely to increase. In contrast with the present practice of

transferring individual crystals to the goniometer stage, some

new sample-preparation technologies have focused on the in

situ collection of data without removing crystals from their

growth chamber. These protocols, involving samples grown in

capillaries (Yadav et al., 2005) or on microfluidic plates (Ng et

al., 2008; Gerdts et al., 2008; Emamzadah et al., 2009), omit the

step where crystals are separated from each other, so it is quite

possible for the incident X-ray beam to impinge on two

crystals simultaneously. The early outlier-based detection of

additional lattices (x3) could either be used automatically to

trigger special data-reduction protocols, or be deployed as

part of a system of safeguards to avoid collecting such data

sets altogether.

At the same time, one must keep in mind the assumptions

underlying the present methods. Autoindexing must succeed

prior to outlier analysis, so even if there are multiple lattices,

one of them must be sufficiently predominant so that its unit-

cell axes can be discerned by the autoindexing methodology

(Steller et al., 1997, in the case of labelit.index). Outlier

detection relies on the assumption that there is a safely known

subset of observations (we assume 40% here) that truly

coincides with the main lattice. Finally, if the outliers are used

as a basis for determining a second lattice, we again assume

that there is a predominant signal to be found, so it may be

difficult to apply the present method to a superposition of

three or more lattices.

The procedures described here are included in the software

package LABELIT, available for download by non-commer-

cial users at http://cci.lbl.gov/labelit, and for licensing by

commercial users. LABELIT is also included with the

PHENIX package (Adams et al., 2002, 2010), available for

download at http://www.phenix-online.org.
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