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matrices. Matrices provide an ideal mathematical 
notation for conceptualizing and analyzing symmetry. 
The mathematics and algorithms used to analyze sym- 
metry become extremely simple since they are based 
on manipulating integers and simple rational numbers 
using elementary linear algebra. More importantly, 
the ability to abstract the symmetry from a problem 
and to represent it as a group of matrices leads to 
numerous practical and theoretical applications. In 
crystallography, for example, we have shown that the 
symmetry matrices may be used in practice to define 
the metric symmetry, the directions of the symmetry 
axes, the Laue symmetry, group-subgroup relation- 
ships, and conventional or standard cells. By provid- 
ing the conceptual and practical framework required 
to perform experimental procedures in a logical and 
general manner, the matrix method should revol- 
utionize the automation of diffractometers. Although 
evolving from research in lattices in crystallography, 
the matrix approach to symmetry is not limited to 
this discipline. Because of its fundamental nature, the 
matrix approach should provide the basis for further 
experimental and theoretical advances in symmetry 
and symmetry-related topics in crystallography as 
well as in chemistry, physics and mathematics. 

Program availability 

A Fortran program, N B S * L A T T I C E ,  has been writ- 
ten to analyze lattice relationships and is available 

for distribution by the NBS Crystal Data Center. The 
present version of N B S .  L A T T I C E  performs several 
functions including the determination of metric lattice 
symmetry, the identification of unknown materials 
using lattice-formula matching techniques, the calcu- 
lation of the reduced cell of the lattice, and the 
calculation and reduction of specified derivative 
supercells and/or  subcells. 

The authors thank Professor H. Ammon of the 
Chemistry Department of the University of Maryland 
for use of the X-ray diffractometer which was pur- 
chased through NSF support, Grant CHE-84-02155. 
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Abstract 

A probability distribution is derived in the form of 
an infinite sum of cosine phase invariants between 
any number of structure factors and is applicable to 
any space group. No approximations are made. With 
the use of only the first-order terms, and the assump- 
tion that the reflection magnitudes are small and that 
all atoms are equal, the distributions reduce to the 
known invariant distribution forms. The effect of 
neighbourhood reflections is implicit in the form of 
the distribution. 

1. Introduction 

Joint probability distributions (j.p.d.'s) have been 
derived by many authors, e.g. Hauptman & Karle 

0108-7673/87/030384-10501.50 

(1953), Klug (1958), Naya, Nitta & Oda (1965), 
Tsoucaris (1970), Hauptman (1974, 1975), Fortier & 
Hauptman (1977), Heinerman, Krabbendam & 
Kroon (1979), Giacovazzo (1974, 1975, 1976) and 
more recently Shmueli & Weiss (1985). Each of these 
treatments is applicable to a particular set of phases 
or a particular space group. The distribution 
described in this paper is general and is intended to 
serve as the starting point for the derivation of a 
specific formula, rather than deriving the distributions 
for each case of interest. The expressions presented 
have the advantage of separating the notational com- 
plexity of the derivation of distributions into two 
distinct areas. The first is the calculation of integral 
coefficients. The second is the search for a set of 
integers that satisfy the phase-invariant relationships. 
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This makes the contributions by neighbourhood 
reflections explicit. 

Although the j.p.d, expression derived is exact, it 
will probably find most use in deriving approximate 
space-group-dependent (sem)invariant relationships. 
This involves calculating lowest-order terms and then 
appealing to the central limit theorem. The derivation 
in § 3 resembles that used by Heinerman, Krabben- 
dam & Kroon (1977) and Shmueli & Weiss (1985). 
A .similar treatment of the triplet j.p.d, in P1 for 
the equal-atom case has recently been published by 
Peschar & Schenk (1986). 

2. The probability distribution 

This section describes the probability distribution to 
be derived in § 3. The joint probability density distri- 
bution between a set of M structure factors F ( h ) =  
Fh exp (iOh), h = {hi, h 2 , . . . ,  hM}, with the assump- 
tion that all N atoms are independently uniformly 
distributed, is given by 

P(Fhl, Fh2, . . . , Fh~; Oh1, Oh2,..., OhM) dFh, dOh, 

71 Y2 "YN/G i = 1 

XCOS ~. ~.. n(p.,g, hi)(2"trhT.tg--Oh,) 
i=1  g = l  /~--1 

(1)  

where %,, /z = 1 , . . . ,  N/G,  are the sets of integers 
n(/~, g, h) that satisfy the constraint 

G M 

E E n(~ ,g ,h , )hT.R~=0  
g = l  i=1  

{/z = 1,2, . . . ,  N /G}  (2) 

for each/~. The origin of these integer constraints can 
be compared with the mathematical origin of the 
summation conditions given by Bricogne [1984; s e e  
equation (3.19)]. Rs, tg are the symmetry rotation and 
translation matrices of the space group. If the F(h) 's 
are to be treated as normalized structure factors E (h), 
then Fh must be divided by the normalizing factor 

N / ( 3  "]1/2  

2 h 

G[n, f, F]  is an integral over N + 1 Bessel functions 
of the form 

O[n, f(h), P~] 

--~ [ ~I S,,(,,8,h)[A(h)P]J.(2,~,h)[f2(h)p]X... 
0 g = l  

×J,,(N/G,g,h)[f~r/6(h)o]]Jz(Fho)p do 
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where 
G N / G  

E =  2 ~ n(/z,g,h). (4) 
g = l  /~=1 

N is the total number of atoms in the unit cell (none 
in special positions), f , (h)  is the scattering factor of 
atom/~ divided by the normalizing factor and G is 
the number of symmetry elements. Hence the number 
of independent atoms is N/G. J,(z) are Bessel func- 
tions of integer order n and n(/~, g, h) is an integer 
function o f # ,  h, g with a domain o f#  = 1 , . . . ,  N/G,  
g = 1 , . . . ,  (3, and h is a set of M reciprocal-space 
vectors (so there are N x M different integer values 
of n not all independent). These integers are grouped 
into N / G  sets, each being labelled by the argument 
/~. Each set contains M x G integers which must 
satisfy the relation (2) of which at least the trivial set 
exists: {n(#, g, hi) = 0, g = 1 , . . . ,  G, i = 1 , . . . ,  M}. 
Sets of this type will be denoted by {0}. The subscript 
of the last Bessel function is a summation of the 
integers n(/~, g, h) over all g and /~, i.e. over each 
atom in the unit cell. 

A more concise notation for the integers n(p, g, h) 
has been devised by Bricogne (1984) but the resulting 
compression in notation has not been thought 
necessary here. In this paper, h, k, 1 and q are 
reciprocal-lattice vectors, # is an integer that iden- 
tifies the unique atoms and g is an integer that labels 
the space-group symmetry elements. The abbrevi- 
ations AS and GR used below refer to Abramowitz 
& Stegun (1972) and Gradshteyn & Ryzhik (1980) 
respectively. References to GR indicate that a par- 
ticular integral identity has been used. 

3. The derivation of  the probability distribution 

This derivation differs from previous j.p.d, proofs 
[except for Shmueli & Weiss (1985) and Peschar & 
Schenk (1986)] in that the characteristic function is 
not converted into a truncated power series before 
the inverse Fourier transform is performed. The struc- 
ture factors F(h) as a function of atomic position are 
given by 

G N/G 
F ' ( h ) = ~  ~ f~,(h)exp[2~rihr.(Rgr~,+ts)], (5) 

g = l  # - - 1  

where r~ is the position of the pth  atom and is 
assumed to be a random variable uniformly dis- 
tributed over the unit cell. Since F(h) = Ah + iBh, the 
probability density distribution of Ah and Bh is given 
by 

P(Ah,, Bh,, A~,  Bh2, • • •, AhM, BhM) 

-- (2~I - ~ '  I ... exp - i  E (A~:,,+B~,y~, 
--co--co --co i=1  

x Q(xh~, yh,, xh2, yh~,. . .  ,xh,,,, YhM) 

x dXh~ dyh~.., dyhM, (6) 
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where Q is by definition the characteristic function 
of P. Since A h and B h a r e  functions of the random 
variables r, [from (5)], the characteristic function 
can be expressed as an expectation value over the 
probability distribution p(rl, r2 , . . . ,  rN/c) of atom 1 
being at r~, atom 2 being at r2 etc: 

Q(Xhl ,  Yhl, " " " , XhM, YhM) 

=Jv~v...~vexp i ~, (Ah,Xh,+Bh,Yh,) 
i = 1  

xp(r l ,  r2 , . . . ,  rN/~) d3rl d3r2.., d3rN/G (7) 

where the integrals are over the unit cell. In polar 
coordinates, Xh = Ph COS ~h, Yh ----Ph sin ~h, Ah = 
Fh C O S  Oh, Bh = Fh sin Oh, and (6) becomes (Karle & 
Hauptman 1958) 

M 

P ( F h l ,  F h 2 , . . . ,  FhM; Oh,, Oh2 , . . .  , OhM ) H dAb ,  dBh,  
i = l  

x . . .  exp - i  E fh,Ph, COS (~h, -- Oh,) 
0 0 0 0 i = l  

X Q(Ph,, O h 2 , ' ' ' ,  P h  M "~ ~h  I , ~ h 2 , . . . ,  ~ h M  ) 

X P h l P h 2 . . .  p h  M dPhl d p h 2  • • • d / g h ~  

x d~:h~ d~:h~.., d~:h,,,. (8) 

From (5) the argument in the exponential of (7) 
becomes 

M G N / G  

i Y. Phi Y. ~ f , (hj)  cos[2crhy.(agr,+tg)-~h~].  
j= l  g=l  ~=1 

(9) 

The summations can be removed from the argument 
of the exponential and expressed as the product 

M G N / G  
1-I I-I l-I exp{iphJ~(hj) 

j= l  g=l /z=l 

x cos [27rh~. (Rgr, + tg) - ~:hj]}. (10) 

From the identity (AS 9.1.45) 

exp (iz cos/3)= ~ i"J,(z) cos (n/3) (11) 
tl m - o o  

and the relationships J_,(z)=(-1)nJ~(z),  i -n= 
(-1)"i" it follows that 

oo 

exp(izcos/3)= Y. J,(z) exp[in(/3+Tr/2)]. (12) 
ti =--OD 

Substitution of this in relation (10) yields 

I-I l-I 1-I L[f ,(h~)p] 
j= l  g=l /z=l n=-eo 

xexp{in[21rhf.(Rgr~,+tg)-~:h~+W/2]}). (13) 

The products can be taken inside the summation 
giving an M xN-tuple sum over the integers 
n(/z, g, h) of the form 

co co 

X . . . Y  .. E 
n (tz  = l , g  = 1 ,h = h ! ) = -oo  n (I.t = N ~  G,g  = G,h  = h M ) = - c o  

x I] J,,(~,.g,h,)[f~ (h,)ph,] 
L / . t = l  g = l  i = 1  

N/G G M 
xexp i E E E n(/x,g,h,) 

p . = l  g = l  i = 1  

( R g r ~  + t g ) -  ~h ,+  7r/2]}. (14)  x [27rh  T . 

To calculate the characteristic function, this summa- 
tion must be multiplied by the atomic position proba- 
bility distribution p(r~, r2 , . . . ,  rN/G) and integrated 
over the unit cell. The assumption of independent 
uniformly distributed atoms requires that 
p(rl, r 2 , . . . ,  rN/o) = (1/V) N/c. It follows that all 
terms in the above summation vanish when integrated 
unless the set of integers n(l~,g, h) satisfies the 
relationship 

G M 
E n(/x, g, h,)hT. Rg = 0 

g = l  i = l  

{ t z = l , 2 , . . . , N / G } .  (15) 

The inverse Fourier transform otT the characteristic 
function Q ( P h , -  • • , ~h) can be performed by concen- 
trating on each reflection h in turn. Collection of all 
terms containing ~:h in (8) yields 

1 exp i ~ ~ [n(~,g ,h)(2~ 'h . tg-~h)]  
g = l  N = I  

x exp [--iFhOh COS (~h -- Oh)]. (16) 

Equivalent terms due to other reflections hi ~ h multi- 
ply this expression but can be ignored for the purposes 
of integration. The relation (AS 9.1.21) 

J,(z) = (in/27r) exp (-in~) 
2~r+8 

x ~ exp{ i~ 'n f l - z cos ( f l -~ ) ] }d f l  (17) 
8 

can be used to integrate this function over 27r. The 
integration with respect to ~ yields 

[ " ] 2"rrJ:~(Fhp) exp - i  Y'. n(l~,g,h)(Oh--~r/2) , (18) 
~ , g  

where 

:~ = E n(~,  g, h) 
P.,g 
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and the final integration over Ph gives 

(2w) -2M E 
"~I , ~2 , ' " , 'YN/  G 

x )-i, x:,,. ,,,,rs,.<h,),,l d d 

(,,7{7" })] xexp Y~ [n(~,g, hj)(2~.bj.ts- Oh,)] 
1 1 ~ = 1  

(19) 

where 

G N / G  

~n= E E n(/x, g, h,). (20) 
g = l  ~ = 1  

Provided (15) is true for the integer function 
n(Iz, g, h) then it is also true for -n(l~, g, h) and since 
the integrals G(n,f, Fh) are invariant under this 
inversion the summation reduces to (1). 

4. Discussion on the probability distribution 

It is not obvious that this probability distribution, 
although exact, is usable in any form because of the 
multiple summations over invariants ( N / G  of them). 

• A typical procedure for calculating a probability dis- 
tribution from (1) would be: 

(i) Remove all unwanted phases by integration. 
Since the expansion is a sum of cosine functions, all 
terms that contain the unwanted phases will vanish 
[S~ ~" COS (~:-- a )  d ~ : =  0] .  

(ii) Find the set of. integers that satisfy 

G M 

~, ~ n(p,,g,h,)hT.Rg=O 
g=l i=1 

{ I z=I ,2 , . . . ,N /G} .  (21) 

This is a straightforward but tedious operation that 
may be automated using a computer algebraic 
package. 

(iii) Evaluate the integrals G(n, f, Fh). 

4.1. Evaluating the integrals G(n, f, Fh) 

The integrals G are the coefficients of the cosine 
terms. No linearization formulae for Bessel functions 
exist as in, for example, the Laguerre polynomials. 
The largest contributions will come from the integrals 
that contain the greatest number of zero-order Bessel 
functions since the integrand will then be highly 
peaked at the origin. Exact Fourier-Bessel series exist 
for these integrals (Barakat & Cole 1979: Watson, 
1942) but here only simple series approximation will 
be needed. As expected, integrals of the form of 
equation (4) are identically zero if [GR 6.573(1)] 

N / G  

Fh> G 2 f~(h). (22) 
/~=1 

In the more interesting case of physically obtainable 
reflection magnitudes integration of the functions G 
may be carded out if an approximation to the zero- 
order Bessel function is made [see, for example, 
Giacovazzo (1980)]. If one collects Bessel functions 
that are of zero order, the approximation is 
oN/c; [ ,',,r/~ ] 
I-[ H Jo[f,(h)p]=exp -(Gp2/4) ~, f2(h) . 

g = l  /~=1 /~=1 

(23) 

The integrals necessary for describing phase 
invariants and seminvariants with their first neigh- 
bourhoods are the following: 

Case 0: 

n(tz, g,h)=O for all/z, g, h. 

Case 1" 

n(/z~, gl, h) = +1 for some g~,/zl, 

all others zero. 
Case 2: 

n(/zl, g~, h) = -n(/z2,  g2, h) = + 1 

for some gl,/z~, g2,/z2, all others zero. 

Although this is a very restricted set of integers, a 
later example will show that this is all that is needed 
to reproduce the well established triplet and quartet 
relationships. Note that in case 1 there are N / G  
different sets of integers corresponding to /z  ranging 
over the N~ G unique atoms. For case 2 there are 
N / G  choose 2* different integer sets corresponding 
to the N / G  choose 2 pairs of atoms /z~/z2. Hence 
the procedure effectively searches for invariant 
relationships given by the integers and then sums the 
contributions over the atoms or pairs of atoms. 

With the approximation for case 0 above, the 
integrals (4) become 

[ ] 7 exp - G  ~, fE(h)p2/4 Jo(Fhp)p dp (24) 
0 /~=1 

and integrate to [GR6.631(4)] 

(2/ao) exp (--F2h/ao) 
N / G  

where ao = G )-'. f2  (h). 
p . = l  

(25) 

The approximation in (23) is good for large N. A 
more detailed examination of (23) shows that the 
left-hand side can be expressed as the right-hand side 
multiplied by a power series in p2. The coefficients 
of the power series a, depend on the number of atoms 
as (N-I/2) ", n =0,  1, 2 . . . .  Hence (25) is correct to 
order N -~/2. 

* The notation N choose n refers to the combinatorial product 
N !/[ n I ( N  - n) [] equal to the number of  ways to form unique sets 
of  n elements from a group of  N elements. 
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The integrals for case 1 are of the form 

~oeXp[-(G[~_~_lf2(h)-f2)p2/4] 

XJ±l[f~(h)p]J±l(Fhp)p dp (26) 

where the summation in the exponential argument is 
over all N / G  scattering factors. This integrates to 
[GR 6.633(2)] 

(2/al)Ii(2f~Fh/al)exp[--(f2+ FE)/al], (27) 

where I~ is a first-order modified Bessel function and 

r N / ~  -I 

The integral for case 2 has the form 

exp ( - a , p  214) J+ I [ f~ ( h )p ]J-1 [fs ( h )/9 ]Jo( Fhp )p dp 
0 

or, more generally, 

G,,a = ~ exp (-c t2p2/4)  
0 

xJ,,[f~(h)p]Jm[fj(h)p]J,,_m(Fhp)p dp, 

where 

(29) 

(30) 

r N/G ] G[ I (31) 

and the sum extends over all N / G  atomic scattering 
factors. If one expands the zero-order Bessel function 
as a power series and uses the integral relation GR 
6.631 (1), this reduces to 

(--a~2)m (2/a2)[fl(  h )/a2]n[f2( h )/O[2] m 

X [ F~-"/(n - m)!] exp ( -  F2/a2) 
co 

x E ~] ( { - - l k + i [ ( f ~ l f 2 ) 2 - - ] ]  k 
k = l  I = 1  

x (n + m + 21) l F(n + 1 + 1 + k/2)} 

x[k! l l (n+ l ) ! (m+n+ l)!(m+ l)!] -1 

x (f2a21/2) 2t+k 

x l F ~ ( - l - m - k / 2 ,  n -m+l ;F2 /a2) ) .  (32) 

1F~ is a hypergeometric function. If a is much larger 
than either f~ or fj then only the l = k = 0 term is 
important and the summation for n = m = I reduces tol 

-2(f~fJa2) exp(-FE/ot2)(1-FE/a2). (33) 

Integrals with three or more non-zero-order Bessel 
functions can be calculated by replacing the Bessel 
functions with their series expansions. The relative 
contribution of such terms to the summation can be 
estimated if the structure factors Fh are taken to be 

normalized E values. In this case f~ and f j - - -N -1/2. 
There are at most N 2 integrals of the form of (29) 
and since the largest coefficients of (1) are of order 
N -1/2 (see example below) they give, in total, a rela- 
tive contribution of order N tS-3(m+")J/2. 

5. Application of the probability distribution 

The N~ G summation conditions (21) complicate the 
determination of the set of contributing terms. 
However, terms with the largest contribution to a 
particular invariant can easily be enumerated. These 
terms are equal to the argument in the exponential 
of the equivalent invariant distribution derived by the 
Gram-Charlier  method since lowest-order terms in 
either series expansion must be equal (Heinerman et 
al., 1977). To illustrate the effect of neighbourhood 
reflections, first consider the quartet distribution in 
P1. The effect of space-group symmetry will be illu- 
strated by the triplet and seminvariant relations in 
P21. 

5.1. Example 1: Quartet in P1 

Only terms for which cosine arguments have phase 
values Oh, Ok etc. multiplied by +1 or 0 will be 
included. This is a subset of the set of integers satisfy- 
ing n(/x, g, h) = {-1,  0, +1}. All expressions contain- 
ing n(/~, g, h) will assume this restriction. In P1 the 
only space-group element is the identity, hence G = 1 
and R = I. This means that the N / G  = N conditions 
on the integers n(/z, g, h) reduce to 

M 

n(/z, 1, h,)h, =0  {/z = 1, 2 , . . . ,  N~ G}. (34) 
i = l  

Since there is only the single group element the argu- 
ment g will be dropped. 

Let h, k, 1, m be a basis set of reflections such that 
h + k + 1 + m = 0. To derive a quartet relationship the 
terms containing phases 0 other than Oh, Ok, Or, Om 
must be integrated out. If this is done all such cosine 
terms will vanish. These terms are of the form 

Thus, the only terms which will survive are those for 
which 

N 

5". n(/z, h , )=0  (36) 
/ ~ = 1  

with hi not a basis reflection (hi ~ {h, k, l, m}). 
As a first approximation let the integers n (/z, q) = 0 

for t z = l , . . . , N  and q not a basis reflection 
{h, k, !, m}. This yields the phase relationships due 
solely to the basis reflections. The first neighbourhood 
appears when considering terms where n(/zl, q )=  
-n(/z2, q) for some/zl and/~2 and all others are zero. 
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If this condition holds, Oq does not appear in the 
cosine argument and these terms will not vanish on 
integration. However, 

n(/~,  h)h + n(/xx, k)k + n(/x,,/)1 

+ n(/zl, m)m+ n(/zl, q)q=0 

is true (similarly for/'g2) and hence q must be a cross 
vector. In other words, the existence of cross vectors 
for the quartet allows the condition (36) to be true 
for cases other than {n(/z, q) = 0,/z = 1 , . . . ,  N}. 

Consider the set of integers ni that satisfy 

Table 1. The set of integers that satisfy equation (37) 
( n  = +1 o r  -1) 

L i n e  h k l m = - h - k - l  h + k  h + l  k + l  
0 0 0 0 0 0 0 0 
1 n n 0 0 - n  0 0 
2 n 0 n 0 0 - n  0 
3 0 n n 0 0 0 - n  
4 n 0 0 n 0 0 n 
5 0 n 0 n 0 n 0 
6 0 0 n n n 0 0 
7 - n  0 0 n n n 0 
8 0 - n  0 n n 0 n 
9 0 0 - n  n 0 n n 

10 0 - n  n 0 n - n  0 

11 n 0 - n  0 - n  0 n 

12 n - n  0 0 0 - n  n 
13 n n n n 0 0 0 

7 

~'. nihi = 0 (37) 
i = 1  

for h,={h, k, l, m=-h-k- l ,  h+k, h+l, k+l}. 
Solutions for this equation are given in Table 1. 

For each value of the integer/x, one of the 14 rows 
can be selected although, in keeping with the above 
restrictions, the vast majority of the N/G sets 
{n(/z, q), q = h, k , . . .} ,  must contain only zero values. 
That is, line zero (set {0}) is chosen from Table 1. In 
fact, at most two of the N sets can contain non-zero 
integers. 

Three types of integer sets can be distinguished. 
Set 0. The set n(/z, q) = 0 for all/z, q: the zeroth- 

order term. 

Set 1. The set where {n(/z, q)}~, # {0} for one/x (of 
which there are 2N: N with n =+1 and N with 
n = -1). 

Set '2. The set where {n(iz, q)}~,~{O} and 
{n(r/, q)}, ~ {0} for some/z, r/such that/z # ~7. [There 
are 2(N choose 2) terms of this type.] 

For clarification in this example, one more sim- 
plification is made. All atoms are assumed equal so 
that f~,(h)=f for all atoms /z. This results in the 
integrals G(n, f, Fh) being invariant under /z. Note 
that all 2N integrals in set 0 above are equal. Let 
Go(h), Gl(h), G2(h) denote the integrals generated 
from the integer sets 0, 1, 2 respectively. Then under 
the restrictions made above the joint probability dis- 
tribution for the quartet + cross vectors is 

P(Fh, Fk, Fl, Fh+k+l, Fh+k, Fh+l, Fk+i; Oh, Ok, Ol, Oh+k+l, Oh+k, Oh+l, Ok+Z) 

+ 2 N [  I-[ Go(q)]Gl(h)Gl(k)Gl(h+k)cos(Oh+Ok-Oh+k) 
I q ~ h , k , h + k  

+ 2 N [  I-[ Go(q)]Gl(h)Gl(l)Gl(h+l)cos(Oh+Ok-Oh+l) 
l q ~ h , l , h + l  

+ 2 N [  H Go(q)]Gl(k)Gl(l)Gl(k+l)cos(Ok+Ol-Ok+t) 
L q ~ k , l , k + l  

line 0 

line 1 

line 2 

line 3 

+ 2 N [  I'[ Go(q)]G,(h)G,(-h-k-l)G,(k+l)cos(Oh+O_h_k_,+Ok+t) line4 
I q ~  h , - h - - k - - l , k + !  

+ 2 N [  I-I Go(q)]Gl(k)Gl(-h-k-l)Gl(h+l)cos(Ok+O-h-k-l+Oh+t) lines 
l q ~  l q - - h - - k - - l , h + !  

+ 2 N [  1-[ Go(q)]Gl(l)Gl(-h-k-l)Gl(h+k)cos(O,+O_h_k_l+Oh+k) line6 
l q ~ l , - h - k - l , h + k  

+ 2 N [  l-I Go(q)]Gl(h)Gl(-h-k-l)Gl(h+k)Gl(h+l)cos(-Oh+O-h-k-t+Oh+k+Oh+t) 
l q ~ h , - h - k - l , h + k , h + !  

line 7 
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+ 2 N [  H Go(q)]G,(k)G,(-h-k-l)G,(h+k)G,(k+l)cos(-Ok+O_h_k_t+Oh+k+Ok+,) 
Lq~k. , -h-k- l ,h+k,k+l 

line 8 

+2N[ H Go(q)]Gl(1)Gl(-h-k-l)Gl(h+l)Gl(k+l)cos(-Ol+O_h_k_,+Oh+t+Ok+t) 
I .q~l , -h-k- l ,h+l ,k+l  

line 9 

+2N[ II Go(q)]Gl(k)Gl(1)Gl(h+k)Ol(k+l)cos(-Ok+Ot+Oh+k-Ok+i) line 10 
k q~k,l,h+i,k+l 

+ 2 N [  1-I Go(q)]Gl(h)Gl(l)Gl(h+k)Gl(k+l)cos(+Oh-Ol-Oh+k+Ok+l) line 11 
q~h,l,h+k,k+! 

+ 2 N [  H Go(q)]Gl(h)Gl(k)Gl(h+l)Gl(k+l)cos(+Oh+Ok-Oh+l+Ok+t) line 12 
q#h,l,h+k,k+l 

+ 2 N [  H Go(q)]Gl(h)Gl(k)Gl(l)Gl(-h-k-l) cos (+Oh+ Ok+OI+ O-h-k-t) line 13 
L q#h,k , l , -h -k - I  .1 

( N) [ I-I Go(q) ] Gl( h )Gl( k)Gl( l)Gl(-h - k + l)G2( h + k ) COS ( Oh "~ Ok "l- Ol-l- O_h_k_,) +2 2 q~h.k.i.-h-k-l,h+k 
lines 1 + 6 

( N ) [  H Go(q)]G,(h)G,(k)Gl(l)G,(-h-k-l)G2(h+l) COS (Oh"l-Ok'l-Ol'at'O_h_k_,) +2 2 q~h,k.l.-h-k-l,h+l 
lines 2 + 5 

+2(N)[  ~ I - l q  h,k,l ,-h-k-l ,k+, Go(q)]G,(h)G,(k)G,(l)G,(-h-k-l)G2(k+l)cos(Oh+Ok+Ol+O_h_k_,) 
l ines3+4 (38) 

plus terms involving two cross-vector phases. The 
expression 

( 2  N )  means N choose 2=  NI/[2I(N-2),]. 

The line numbers refer to Table 1 and indicate which 
set of integers were used to generate the term. The 
products appearing in each term are over those reflec- 
tions q not explicitly appearing as arguments in G1 
or G2 functions for that term. 

5.1.1. Comparisons with other quartet relations. 
Denote by a,(h) the ratio G~(h)/Go(h). Then if we 
divide by the zeroth-order term we can remove the 
products Hq Go(q). This essentially removes the Wil- 
son term effect from the arguments. By integrating 
over the cross-vector phases, all terms involving these 
phases vanish (including those not explicitly written), 
to leave 

H Go(q)[ 1 + 2NA,(h)A,(k)A,(I)A,(-h - k-  1) 
q 

X COS (O h q- O k "1- 01 "~ O_h_k_l )  line 13 

+2(N2 )A,(h)A,(k)A,(1)A,(-h-k-l)A2(h+k) 

xcos (Oh+ Ok+ Oi + O-h-k-t) lines 1+6 

+2(N2 )A,(h)A,(k)A,(l)A,(-h-k-l)A2(h+ l) 

X COS ( O h "t- O k "1- O I -~ O_h_k_l )  lines 2 + 5 

N)AI( )A1( )Al(l)Al(-h- -l)A2(k+l) +2 2 h k k 

COS (O h "q- O k q- O l "q- O_h_k_i) 1 . lines 3 +4 X 

(39) 

The expressions for Go(h), G2(h), G2(h) are given 
by functions (25), (27), (33): 

Go(h)=(1/2ao) exp (-F2/43o) (40) 

O,(h ) = [exp(-f2/4a,)/2c~,] 

x I,(fFh/2a,) exp (--F2h/4a,), (41) 

G2(h) = (f2/2c¢2) exp ( -  F2/432)[ (Fh/4o¢2) -- 1 ], 
(42) 
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where 
N 

ao=¼ ~., f2=¼Nf2 ' (43) 
~=1 

N 
a~=l ~., f 2 = ~ ( N - 1 ) f  2, , (44) 

p,---- 1,/.t # ~ 1 

N 
32=¼ E f E = ~ ( N - 2 ) f  2. (45) 

/~ = 1,/.t, # M,I,M, # / ~ 2  

With the approximation that ao ~ a l  ~ a 2  ~ a - -  

N f 2 / 4 ,  

and 

A~(h)=exp(-f2/4a)I~(fFh/2a) (46) 

AE(h)=(f2/2a)[(F2/43)-1]. (47) 

If ( N  choose 2 ) =  N ( N - 1 ) / 2 =  N2/2, the quartet 
relationship may be written 

[ ,~=h,k,.rI..,k+t (1/2a ) exp (-- F2 / Nf2) ] 

x [ 1 + 2 N  exp ( - 4 / N ) I ~ ( 2 F h / N f ) I ~ ( 2 F k / N f )  

x I~(2Fl/Nf)I~(2F-h-k-l/Nf) 

+ ~ [ ( f h + k  + x{1 1 2 F2+l+F2+l)/Nf2_3] 

X COS (O h "~" O k -[- Ol "at- O - h - k - l ) } ] .  (48) 

If the sum of the squares of the cross-vector reflections 
is small, then the coefficient multiplying the cosine 
term is negative. This indicates a maximum of the 
probability density at ~r. This relationship is compar- 
able to equation (5) of Heinerman (1977). 

Equation (38) can be related to Hauptman (1975) 
[equation (2.5)] under the condition that Fh "~ Nf. In 
this event, A~(h) 'exp(-1/N)Fh/Nf=Eh/N~/2,  
A E ( h ) - - 1 / N .  Substitution of these values into (39) 
and the taking of the exponential of the log and then 
expansion of the log function as a power series to 
first order yields Hauptman's  result. 

5.2. Example 2: The effect of symmetry 

5.2.1. The triplet in P2~. In this example the effect 
of P21 symmetry on the probability distribution 
between three reflections h, k, l is discussed. The 
symmetries of P2~ can be generated by the two Seitz 
matrices Sg = R s / t  s, g = 1, 2: 

R~ tl R2 t2 

[00 i][00] [00  lIl°l 1 0 0 0 -1  0 
1 1 / 2 .  
0 0 -1.1L 0d 

The equation 

nlh rR1 + n2kTR1 + n31rR1 

+ n4hrR2 + nskT"R2 + n61rR2 = 0 (49) 

needs to be solved in order to generate the correct 
set of integers. If  no relationships can be specified 
between the six reflections hrR1, h T R 2 , . . . ,  l '  RE then 
the only solution to (49) is nl = n2 = na = n4 = n5 = n 6  - -  

0. If, however, 1 = - h -  k and a triplet is formed then 
(49) can be simplified to 

( n l -  na)hrR1 + ( n 2 -  n3)krR1 

+(n4-n6)hrR2+(ns-n6)kTR2=O. (50) 

If h, k are general reflections there are no other 
simplifications to (50) and the solution is n~ = n 2 - -  n 3 
and n 4-- n5  = n6. For this combination of integers the 
argument of the cosine terms reduces to a sum over 
the phases of h, k, l and the translation components 
2¢rh. tg vanish. The integrals G(n,f, Fh) are also the 
same as would be calculated from (4) assuming no 
symmetry and therefore G x N / G  = N unique atoms. 
In other words, the distribution is the same as for 
P1. If  an extra condition such as hrR~ = hTR2 [or 
h = (0, kl, 0)] is added then (50) reduces to 

(n l  - -  n3+ n 4 -  n6)hrR1 

+(n2-n3)kTRl+(ns-n6)kTR2=O. (51) 

This yields the solutions n2 = n3, n5 = n6, n~ + n 4 = 
n3 + n6 and introduces an array of extra integers that 
are allowable and that  alter the distribution. Table 2 
shows the sets of allowable integers along with the 
coefficients that multiply the cosines. The cosine argu- 
ments reduce to 

N 
- ~, n6(Iz)(Oh+Ok+Ol+2Zrh.t2) 

/.~----1 

N N 
+ Y. n3(lz)(Oh+Ok+Ol)+ ~, n4(/z)2crh.t2. 

t~=l /~=1 
(52) 

The coefficients with the largest magnitudes (i.e. that 
vary a s  N -1/2) and also multiplying a non-constant 
cosine include lines 1, 2, 4, 8, 9, 11, 18, 24. Adding 
these terms together yields 

4A~(h)Al(k)A~(l)[l +(_l)kqcos crp. (53) 

For odd kl the phase relationship vanishes, as expec- 
ted for a systematically absent reflection. It should 
be noted the terms that contribute to the invariant 
relation (53) are completely specified by the integers 
which provide a solution to (51). Hence the main 
difficulty is in keeping track of the various terms. 

5.2.2. Seminvariants. The concepts of neighbour- 
hoods and representations used by Hauptman (1975) 
and Giacovazzo (1980) are encompassed in this 
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Table 2. The set of integers that solve equation (51) along with the corresponding arguments; (1)=Oh'~'Ok'~-O! 
and A,,~=G,a,/ Go; G,a, refers to the integral (30) 

L i n e  n I n 2 n 3 n 4 n 5 n 6 Coe f f i c i en t  C o s i n e  a r g u m e n t  

0 0 0 0 0 0 0 Ao(h)Ao(k)Ao(l) 0 
1 -1 0 0 0 -1 -1 At(h)At(k)Al( l)  4 
2 1 0 0 0 1 1 A~(h)A~(k)A~(l) - 4  
3 1 0 0 -1 0 0 Ali(h)A~(k)Ao(l) -¢rk I 
4 0 0 0 -1 -1 -1 Al(h)At(k)Atr( l)  4 -~rk  t 
5 2 0 0 -1 1 1 A2~(h)Al(k)At(l) - 4 - T r k t  
6 -1  0 0 1 0 0 Al[(h)Ao(k)Ao(l) Irk l 
7 -2  0 0 1 -1 -1 A2r(h)Al(k)At(l) 4+Trk l 
8 0 0 0 1 1 1 A~(h)At(k)zal(l) - 4 + r r k  1 
9 -1  -1 -1 0 0 0 At(h)At(k)A~(i) 4 

10 - 2  - 1  - 1  0 1 1 A2(h)At~(k)AtT(l) 2 4  
11 0 - 1  - 1  0 1 1 Ao(h)At[(k)A~(l)  0 
12 0 - 1  - 1  - 1  0 0 Al(h)Al(k)At( l)  4 -~rk  l 
13 - 1  - 1  - 1  - 1  - 1  - 1  Ati(h)Ali(k)Al~(l)  24 -¢rk  1 
14 1 - 1  - 1  - 1  1 1 A~(h)A t i ( k )A t i ( l  ) - i rk  1 
15 - 2  - 1  - 1  1 0 0 A2~(h)Al(k)Al(l) 4+Irk l 
16 - 3  - 1  - 1  "1 - 1  - 1  A3T(h)AII(k)A~I(I) 24+Irkt 
17 - 1  - 1  - 1  1 1 1 AIi(h)AIT(k)AIi(I) ¢rk~ 
18 1 1 1 0 0 0 A~(h)A~(k)At(l) - 4  
19 0 1 1 0 - 1  - 1  Ao(h)Ati(k)Ati( l)  0 
20 2 1 1 0 1 1 A2(h)Ait(k)A~l(l) - 2 4  
21 2 1 1 - 1  0 0 A2i(h)A~(k)At(l) -4 -~rk~  
22 1 1 1 -1 -1 -1 A~r(h)A~r(k)A~i(l) -~rk~ 
23 3 1 1 - 1  1 1 A3~(h)At~(k)AH(l) -24-~rk~ 
24 0 1 1 1 0 0 A~(h)A~(k)A~(i) -4+~rkl  
25 - 1  1 1 1 - 1  - 1  A~r(h)Air(k)A~i(l) -~rkt 
26 1 1 1 1 1 1 A~(h)At~(k)AH(l)  -24+¢rk~ 

formulation of the probability distribution. This stems 
from the fact that if the summation integers n(h, g = 
i) =-n (h ,  g =j )  then the phase ~h does not appear 
in the cosine argument. For example, in the two-phase 
seminvariant given by 

q~h~- q~h~ (54) 

where h~ = (h~, k, l~) and h2 = (h2, k, 12), the following 
invariant can be constructed (Giacovazzo, 1979): 

h~-h2+ h~rRz- h2rRz = 0. (55) 

For the N / G =  N/2  equal-atom case the lowest- 
order contribution for this invariant relationship is 

(1/N)E2,E2~cos[2(~h,-~h2)]. (56) 

An equally large contribution can be obtained from 
considering the first representation of this invariant 
(Giacovazzo, 1980). This is the reflection(s) I such that 

hi - h2  -1- lrRs - IrRp = 0 (57) 

is true for some rotation matrices Rs and Rp. Again 
the phase of I does not appear in the cosine argument 
and we have 

(2/N)Eh,Eh:(E 2-1)  cos [ ~h l -  ~h~ + 2rrl. (L - tp)]. 

(58) 

These two relationships can be compared with the 
seminvariant formula derived by Hauptman & Green 
[(1978), equation (4.1)]. 

6. Concluding remarks 

A general expression for the joint probability distribu- 
tion between phases assuming a random atom distri- 
bution has been derived. The form of the integrals 
G(n, f, Fh) is complex but adequate approximations 
can be made if the number of atoms is large. Iden- 
tification of the integers n(/z, g, h) that satisfy the 
constraints should be possible through a computer 
algebraic approach. The methods described reduce 
the complications involved in expanding the charac- 
teristic function as a power series (Naya et al., 1965) 
if only an asymptotic distribution is required. The 
effect of neighbourhood reflections is made explicit. 

Finally, it should be noted that joint probability 
distributions are usually expressed as an asymptotic 
series in powers of N -1 /2 .  These series are not conver- 
gent for a given N and the truncation error is of the 
order of the last term neglected. No analysis of the 
convergence properties of (1) has been conducted 
although the proof given in § 3 shows that the series 
must converge at least conditionally. 

The author thanks Professor Syd Hall for many 
useful discussions. This work was supported by a 
Commonwealth Postgraduate Research Award. 
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Abstract 
A procedure involving projection from six- 
dimensional to three-dimensional space to describe 
objects that give sharp diffraction with fivefold sym- 
metry can be reduced to the easier problem of projec- 
tion from two dimensions to one dimension. This 
result is used to derive an explicit formula for the 
quasilattice contribution to the diffracted intensity for 
an arbitrary size and shape of the selection region. 
The predictions of this formula are compared with 
the electron diffraction patterns obtained from rapidly 
solidified aluminium-manganese alloys, and it is con- 
cluded that the edges of the rhombic faces of the 
three-dimensional objects from which models for 
these alloy structures may be constructed is larger 
than that used in previous analyses by a factor of z 3, 
where r is the golden mean. It is shown that the 
quasilattice density is proportional to the volume of 
the selection region in the complementary three- 
dimensional space into which a lattice point in six- 
dimensional space must project in order for the point 
to be included in the direct space; this results in 
important constraints on the possible structures of 
these alloys. 

Introduction 
The recent discovery by Shechtman, Blech, Gratias 
& Cahn (1984) of electron diffraction patterns with 
icosahedral symmetry that have sharp spots has 
stimulated a new study of the conditions under which 
such diffraction patterns may exist. Sharp diffraction 
has traditionally been associated with periodic lat- 

tices, and it has long been known that fivefold rotation 
symmetry is incompatible with an infinite translation 
lattice. It has been shown, however (Levine & Stein- 
hardt, 1984), that sharp diffraction does occur from 
non-periodic patterns under some conditions. 
Moreover, as was first shown by Penrose (1974; also 
Mackay, 1976; Gardner, 1977), patterns with fivefold 
symmetry can be produced that have long-range order 
although they lack periodicity. The two-dimensional 
Penrose tilings have been generalized to three 
dimensions by Mackay (1981, 1982). [In fact, 
Mackay's results were anticipated by Baer (1970), 
who used the principles to construct a number of 
interesting architectural structures.] Kramer & Ned 
(1984), Duneau & Katz (1985) and Kalugin, Kitayev 
& Levitov (1985) have shown that the three- 
dimensional tilings can be understood in terms of 
projection from six dimensions, in which fivefold 
rotation is compatible with periodicity, into three 
dimensions. 

Regardless of whether the alloy of aluminium and 
manganese that was studied by Shechtman et al. 
(1984) is actually an example of a three-dimensional 
object that has an inherent icosahedral diffraction 
pattern, the mathematical development of the diffrac- 
tion properties of these tilings stands by itself, 
independent of its applications to any experimental 
observations. As in periodic crystals, the intensity of 
a diffraction spot for the 'quasicrystal' (Mackay, 1981) 
with fivefold symmetry is proportional to the product 
of two factors, one due to the projected lattice and 
one due to the arrangement of atoms associated with 
each point. In contrast to crystals, however, the spots 


