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Xtriage 

A command line utility that allows the user to rapidly assess the quality and specific idiosyncrasies of an X-ray dataset has been developed. The program, called Xtriage, combines the twin analyses tools as described in a previous CCP4 newsletter (Zwart, et al., 2005) with other data quality indicators.

In the following sections, the various steps in the characterization of an X-ray data set are characterized by Xtriage.

Unit cell content analyses 

The number of residues or nucleotides in the asymmetric unit is estimated on the basis a prior distribution of the solvent content, similar to those used by Kantardjieff & Rupp (2003). In contrast to the distributions obtained by Kantardjieff & Rupp, the distribution used in Xtriage is not conditioned on resolution and describes the probability of a given solvent content rather than a Matthews coefficient.  Ideally, the estimate of the number of monomers in the asymmetric unit on the basis of the solvent content should be combined with an analysis of a self rotation function. The estimate provided by the current implementation, is however sufficient in most cases.

Anisotropic Wilson scaling 

The anisotropic Wilson B tensor is estimated as described by Popov & Bourenkov (2004) and Zwart et al., (2005). The resulting estimate of the overall B tensor is used to correct for anisotropy in the data. The likelihood based Wilson scaling routines have furthermore been shown to be less sensitive to resolution truncation than classic Wilson analyses, as can be seen from Figure 1. 
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Outlier rejection

Possible outliers are identified using a procedure similar to that as described by Read (1999). The method is based on an extreme value distribution of the intensities (Dudewiwicz & Mishra, 1988). The cumulative distribution of the intensities, assuming an acentric Wilson distribution of the amplitudes, is equal to
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The p-value of the associated largest normalized intensity is then equal to
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and quantifies the probability that the largest normalized intensity in a data set of size 
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. In this manner, the outlier analysis takes into account the size of the dataset. Given for example a data set with 10000 reflections, one can be 99% sure that the largest E-value is not larger than 3.72. However, for a data set containing 1 million observations, the latter limit is equal to 4.29. In Xtriage, reflections with a p-value lower or equal than 1% are considered potential outliers.

Wilson plot analyses 
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An analysis of the Wilson plot as performed by ARP/wARP (Morris et al., 2004) has shown to be a powerful sanity check for the quality of macro-molecular data. Within Xtriage, an empirical Wilson plot is used that has been obtained using over 2500 high resolution data sets obtained from the EDS (Kleywegt et al., 2004). Empirical Wilson plots for both protein and DNA/RNA structures are present, and can be used to construct expected intensity profiles for protein-DNA or protein-RNA complexes as well. Figure 2 illustrates the difference between the mean intensity of a protein structure and a DNA/RNA structure. 

Ice ring detection 

If for some reason there was a significant build up of ice during data collection, the diffraction from the ice (“ice rings”) can have a detrimental effect on the data. If the ice rings are sufficiently diffuse, data reduction programs are capable of subtracting the ice intensities by evaluating the background around the diffraction spots of the crystal. However, if the ice rings are too sharp, the variation in the background may be too large to determine a meaningful intensity to subtract. The result is artifacts in the merged data, typically a sharp increase or decrease of the mean intensity, or a sudden drop in completeness at certain resolution ranges (Garman & Schneider 1997). The ice ring detection procedure in Xtriage monitors sensitive resolution areas and reports any signs of the presence of artifacts.

Completeness analyses 

In order to quickly assess the completeness of the data at low resolution, a completeness analyses is carried out using data up to 5 Å. This analyses is not actively used in further processing of the data, but is provided as a basis for manually judging the low resolution completeness to a greater detail than possible given output of most data reduction or scaling programs.

Analyses of anomalous signal

The presence of anomalous signal is quantified by reporting the fraction of Bijvoet pairs for which the absolute intensity difference is significantly larger than zero, a quantity denoted as the measurability (Zwart, 2005). The resolution range where the measurability lies between 6 and 3% is reported as the resolution range to where the anomalous signal is expected to be useful in substructure solution.

Detection of pseudo translational symmetry

Pseudo translations are located and identified by inspection of the Patterson function using data truncated to 5 Å. Prior information of the distribution of Patterson peak heights in data without pseudo translational symmetry (Zwart et al., 2005) is used to judge on the presence of translational symmetry. 

Twinning tests independent of twin laws 

Classic indicators of twinning such as the intensity ratio <I2>/<I>2 and the Wilson ratio <F>2/<F2>, as well as the cumulative normalized intensity distribution are provided. Besides these tests, the L statistic is computed (Padilla & Yeates, 2003), using a miller index partitioning scheme based on the possible location of pseudo translational symmetry (Zwart et al., 2005). 

Derivation of twin laws 

Twin laws are determined from first principles as described by Grosse-Kunstleve et al. (2005). First, the highest lattice symmetry is determined given unit cell parameters (Grosse-Kunstleve et al., 2004). Next, the coset-decomposition algorithm as proposed by Flack (1987) is used to enumerate the twin laws, given the space group of the merged data. The derived twin laws are further classified as merohedral if the twin operator is a member of the Euclidian normalizer of the given space group of the data, and as non-merohedral otherwise. To give an example, non-merohedral twin laws arise if the space group of the data is monoclinic, but the lattice symmetry is orthorhombic.

Twinning test dependent on twin laws

Using the twin laws as derived above, twin law dependent tests such as the H-test and Britton test are performed. The resulting estimates of the twin fractions, together with the results from the L-test are used to provide clues whether or not the data is likely to be twinned, has a potential non crystallographic symmetry axes parallel to a putative twin law, or if it has been indexed in the wrong space group.

Most results of Xtriage can be viewed using the ccp4i program loggraph.

An Xtriage tutorial is available online at http://www.phenix-online.org/tutorials.

Fest: F and FA estimation.

The substructure solution engine HySS (Grosse-Kunstleve & Adams, 2003), has shown to be a powerful, easy to use and robust tool that allows the user to quickly solve substructure when SAD data is available. Until recently, external tools had to be used to generate F or FA values from data from substructure solution scenarios such as SIR(AS), RIP(AS) or MAD. With the goal of making full automation of substructure structure solution using tools available from the CCTBX (http://cctbx.sourceforge.net)

In order to make more substructure solution strategies and phasing scenarios more directly accessible with HySS, a set of routines have been implemented that allow the estimation of F or FA values given SAD, SIR(AS), RIP(AS) or MAD data.

The following scaling routines are available

Relative anisotropic scaling

An anisotropic scale factor is determined by minimizing the target function:
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where 
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 is the anisotropic scale factor to be determined. The super scripts 
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 are dataset identifiers. Amplitude based target functions, as well as target functions without the use of standard deviations, are available. The optimization is carried out using second derivatives optimization methods currently under development in the CCTBX.

Local scaling

Local scaling is an effective tool to reduce differences between data sets due to absorption or other sources of systematic errors (Matthews & Czerwinski, 1975) and can play an essential role in obtaining suitable isomorphous, dispersive or anomalous differences needed for a successful substructure solution. Three local scaling functions have been implemented: 

1. local least squares target using either intensities or amplitudes (Matthews & Czerwinski, 1975, expression 5):
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where X denote  corrected intensities or amplitudes.

2. The ratio of local intensity or amplitude moments (Terwilliger, personal communication) :
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3. The scale factor estimation procedure developed by Nikonov (1983), implemented in a local scaling framework:


[image: image16.wmf](

)

(

)

2

/

1

2

1

2

2

1

2

1

1

2

÷

÷

ø

ö

ç

ç

è

æ

-

=

å

å

-

h

h

h

h

h

h

x

x

acentric

x

x

acentric

acentric

F

F

N

F

F

N

k



(7)


[image: image17.wmf]å

=

-

h

h

h

1

2

1

1

x

x

acentric

centric

F

F

N

k








(8)

and
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This scaling procedure is designed to take into account the effect that the expected intensity for a derivative is not exactly equal to the expected intensity of the native.

The summation in the three expressions above is carried out around a local sphere around each reflection. Preliminary tests indicate that for reasonable to good data, no specific local scaling method is preferred. A further analyses is however needed to make any definite conclusions.

Outlier detection

The presence of outliers in a difference dataset can have a detrimental effect on the success of substructure solution. A few large, but incorrect FA or F values can dominate the Patterson function, E-maps or triplet relations used to determine the substructure. 

Outlier detection can be performed using various protocols and criteria. Two following outlier detection schemes are available to the user, both giving similar results:

1. Reject reflections for which 
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The subscript 
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 denotes that an averaging over a resolution shell has been carried out. 
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 is a constant set to 3, but can be changed by the user.

2. Reject reflections for which 
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and
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 is a constant set to 3, 
[image: image27.wmf]rms

C

is set to 4. These values can be changed by the user, if desired.

After potential outliers have been identified, they are removed from the reflection list, and the data is rescaled. This scheme can be iterated until no more outliers are detected, or can be carried out a fixed number of times.  Optionally, the value of 
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 can be increased for subsequent rejection outlier cycles.

The first outlier rejection scheme is the once used in Solve (Terwilliger, personal communication). The second set of criteria is similar to those present in CNS (Grosse-Kunstleve & Brunger, 1999) and HySS (Grosse-Kunstleve & Adams, 2003).

FA estimation

The scaling and outlier routines are combined in a program that allows the calculation of F values or the estimation of FA values. The program, called Fest, is a command line driven utility that currently supports F of FA value estimation for phasing scenarios such as SAD, SIR(AS), 2 wavelength MAD as well as RIP(AS).

The FA value estimation algorithm for MAD data is currently based on the work of Singh & Ramasheshan (1968) and Kingston (2001) and is limited to 2 wavelength MAD. The CNS based method of averaging isomorphous and anomalous difference Pattersons for obtaining FA estimates, is also available (Grosse-Kunstleve & Brunger, 1999). Other methods are currently under development.

A large number of options in Fest are accessible to the user via a comprehensive parameter file, using the PHIL module of the CCTBX (Grosse-Kunstleve et al., 2004; see also figure 3). The control over the behavior of Fest is very similar to the macromolecular structure refinement module in PHENIX (Adams et al., 2004). The user has full control over which relative and local scaling targets will be used, as well as over outlier detection parameters. Most of these tweaking opportunities are however hidden for the standard user, unless the expert_level is set as to make all customizable variables visible to the user. The basic input parameters for a SAD run can be found in Figure 3. Although default settings should be sensible for all scenarios, the full control the scaling procedure and subsequent FA calculations could be crucial in unusual cases.   

Automatic re-indexing

For each data set supplied (other than the first data set given), all possible re-indexing matrices are derived as described by Grosse-Kunstleve et al. (2005). Each data set is automatically re-indexed using the matrix that maximizes the correlation of amplitudes.

Examples: RIP

The data sets 2blu and 2blr, the 'before' and 'after' data sets from a RIP experiment (Nanao et al, 2005), were used to assess the behavior of Fest and HYSS when dealing with RIP data.

The RIP scaling strategy is equal to the scaling strategy for SIR, albeit with an option to downscale the 'after' dataset by a user given constant k (controlled by the keyword nsr_bias), in line with the work of Nanao, Sheldrick & Ravelli (2005).

Interestingly, without downscaling the 'after' data set, HYSS was able to locate 6 'super- sulfurs' out of 8 in total, by using data with a high resolution limit anywhere between 4 and 3 Å. The effect of downscaling on the number of sites found by HYSS that correspond to peaks found in a difference map is shown in figure 4.  These results were obtained by using only anisotropic least squares scaling on intensities using the target function shown by expression (4). The optimal down weighting factor for this particular dataset lies around 0.995, slightly larger than the value reported (0.972) by Nanao et al. (2005).  

Note that various factors influence estimated value of the final scale. In Fest, these are the type of target function used, whether to scale on amplitudes or intensities or whether to use or ignore experimental standard deviations. The changes in the final scale are usually in the order of a couple percent.

Given the described behavior of the scaling algorithms in Fest as well as the presence of a different scaling algorithm used in SHELXC, used by Nanao et al. (2005), combined with different resolution limits in substructure solution, it is not surprising that different values of 'optimal' down weighting are obtained by the different programs.

Example: SIR

The results of HySS using F's obtained from Fest using native data and a mercury derivative of GroEl are shown in table 1. Note that the mercury derivative data is rather incomplete, resulting in an incomplete isomorphous difference data set.

Table 1. GroEl SIR Fest and HySS details.

	Spacegroup
	C2221

	Nominal resolution
	30-3.8 Å

	
	Native
	Derivative

	Completeness
	Full: 94% 

30-5: 98%
	Full: 35% 

30-5: 53%

	Absolute scaling ln(scale)
	-0.67
	-0.68

	Trace of absolute scaling Bcart
	51, 47, 66
	62, 55, 70

	

	Relative scaling ln(scale)
	-0.004

	Trace of relative scaling Bcart
	-13, -6, 25 Å2

	F completeness
	34%

	CCconsensus
	46%

	Sites found (correct)
	21 (out of 21)


Although the completeness is rather low, HySS is readily able to locate the full substructure, and finds 21 out of 21 sites with an rmsd of 0.66 Å to the true heavy atom model.

Example: MAD

A MAD data set of Acyl-CoA Thioesterase II (Li et al, 2005), was used to test the implementation of the Singh & Ramaseshan FA value estimation procedure available in Fest. The f' and f" values used in the procedure were known in advance. In order to assess the quality of the FA estimates, HySS was used to determine the substructure, while disabling the automatic convergence procedure. Furthermore, the substructure was solved using only the anomalous differences of a single dataset, as well as using dispersive differences between pairs of datasets. The correlation coefficient of the best solution is shown in Table 2 for SAD and in table 3, for the 2wavelength combinations, using only dispersive differences as well as FA estimates. Although when using a SAD, one is able to locate the substructure without any problem, substructure solution with FA values gave significantly larger correlation coefficients.

Table 2: Fest and HySS results for Acyl-CoA Thioesterase II

	
	SAD

	High
	0.58

	Peak
	0.61

	Inflection
	0.53


Correlation coefficients from HySS obtained using SAD data.
Table 3: 2 wavelength results for Acyl-CoA Thioesterase II

	
	dispersive
	FA

	High,Peak
	-
	0.65

	High,Inflection
	0.61
	0.73

	Peak,Inflection
	0.50
	0.67


Correlation coefficients as obtained from HySS using only dispersive differences or estimated FA values.  Note that the dispersive difference between peak and high energy remote did not contain enough dispersive signal to locate the substructure.

Discussion

The command line utility Xtriage has shown to be a practical tool that can be used quickly after data processing to detect possible twinning, as well as point out incorrect assignment of the space group. 

The relative scaling and F estimation techniques implemented in Fest seem to be able to handle a variety of data originating from various sources. The FA estimation for the 2 wavelength MAD case did improve substructure solution as compared to SAD, although the SAD data alone was enough to locate the substructure. Although the value of f' and f" are currently required on input for the 2 wavelength MAD case, approaches are being developed that do not require manual specification of these parameters.

Fest and HySS have shown to be able to deal with RIP and SIR data as well.  The full customizability of Fest might be of use in unusual cases where the default scaling protocol are suboptimal or when downscaling of a native(-like) data set turns out to be necessary.

Acknowledgements

PHZ thanks Tom Terwilliger for stimulating discussion regarding local scaling issues and outlier rejection details as implemented in SOLVE. The authers thank Dr. Z. Dauter for making the Acyl-CoA Thioesterase II MAD data set available via the Autostruct (http://www.ccp4.ac.uk/autostruct/)  web pages.

References

Adams, P. D., Gopal, K., Grosse-Kunstleve, R. W., Hung, L.-W., Ioerger, T. R., McCoy,

  A. J., Moriarty, N. W., Pai, R. K., Read, R. J., Romo, T. D., Sacchettini, J. C., Sauter, N. 

  K., Storoni, L. C. & Terwilliger, T. C. (2004). J. Synchrotron Rad. 11, 53-55.

Dudewicz, E. J. & Mishra, S. N. (1988). Modern Mathematical Statistics. New York: Wiley.

Flack, H.D. (1987). Acta Cryst. A43, 564-568.

Garman, E.F. & Schneider, T.R. (1997). J. App. Cryst. 30, 211-237. 

Grosse-Kunstleve, R.W., Sauter, N.K. & P.D. Adams. (2004). IUCr   

  Computing Commission Newsletter 3.
Grosse-Kunstleve, R.W., Afonine, P.A., Sauter, N.K. & P.D. Adams. (2005). IUCr   

  Computing Commission Newsletter 5.

Grosse-Kunstleve, R.W. & Adams, P.D. (2003). Acta Cryst. D59, 1966-1973.

Grosse-Kunstleve, R.W. & Brunger, A.T. Acta Cryst. (1999). D55, 1568-1577

Kantardjieff, K. & Rupp, B. (2003). Prot. Sci. 12, 1865-1871.

Kingston, R.L. (2001). Acta Cryst. D57, 101-107.

Kleywegt, G.J., Harris, M.R., Zou, J.Y., Taylor, T.C., Wahlby, A. & Jone, T.A. (2004). Acta Cryst. D60, 2240-2249.

Li, J., Derewenda, U., Dauter, Z., Smith, S., Derewenda, Z. S. (2000). Nat.Struct.Biol. 7 555-559.

Matthews, B. W. & Czerwinski, E. W. (1975). Acta Cryst. A31, 480-487

Morris, R. J., Zwart, P. H., Cohen, S., Fernandez, F. J., Kakaris, M., Kirillova, O., Vonrhein, C., Perrakis, A. & Lamzin, V. S. (2004). J. Synchrotron Rad. 11, 56-59. 

Nanao, H.M., Sheldrick, G.M. & Ravelli, R.B.G. (2005).  Acta Cryst. D61, 1227-1237.

Nikonov, S. (1983). Acta Cryst. A39, 693-697.

Padilla, J.E. & Yeates, T.O. (2003). Acta Cryst. D59, 1124-1130.

Popov, A. N. & Bourenkov, G. P. (2003). Acta Cryst. D59, 1145-1153.

Read, R.J. (1999). Acta Cryst. D55, 1759-1764.

Singh, A.K. & Ramaseshan, S. (1968). Acta Cryst. B24, 35-39.

Zwart, P.H., Grosse-Kunstleve, R.W. & Adams, P.D. (2005). CCP4 Newsletter 42, contribution 10. 

Zwart, P.H. (2005) Acta Cryst D61, 1437-1448.

 

�


Figure 2: Mean intensity as a function of resolution. In red, the 'standard' protein mean intensity is shown. The 'standard' DNA/RNA curve is shown in green. In blue, the observed mean intensity of a sample DNA structure is shown. 








scaling.input {


  basic {


    n_residues = None


    n_bases = None


    n_copies_per_asu = None


  }


  xray_data {


    unit_cell = None


    space_group = None


    reference {


      file_name = None


      labels = None


    }


  }


  output {


    log = 'fatso.log'


    hklout = 'fatso.mtz'


    outlabel = '_ATSO'


  }


}





Figure 3: basic input parameters for Fatso.
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Figure 4: The influence of down weighting the 'after' dataset on the number of correct sites found. The 'optimal' down weighting factor k seems to lie around 0.995.
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Figure 1: Comparing likelihood based Wilson scaling with classic (straight line) Wilson scaling by progressive truncation of the high resolution limit.
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