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Experimental error correction and scaling is the last step in

X-ray diffraction data processing. It is also critical in obtaining

good-quality data. In this study, an algorithm is proposed to

more generally and efficiently correct experimental error in

X-ray crystal diffraction data. With this algorithm, the

experimental error is represented by a symbolic three-

dimensional function C(�, �, t) in the detecting space. Here,

(�, �) are the coordinates of the diffraction spots on the image

and t represents the data-collection time. While the theoretical

form of C(�, �, t) is not known, it will be determined from the

data through computer-aided analysis. The free Rmerge is

introduced to check the validity of the solution. The three-

dimensional symbolic function does not carry any assumptions

and thus can generally account for experimental errors in

various X-ray crystal diffraction experiments that are

normally too complicated to be described by any fixed

formula. Tests will be given to compare the results from

different algorithms.
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1. Introduction

Data quality is the key to successful solution of protein

structures by X-ray crystallography. At present, MAD (Phil-

lips & Hodgson, 1980; Karle, 1980; Hendrickson, 1991) is the

most commonly used phasing method to solve novel protein

structures. It utilizes the multi-wavelength anomalous scat-

tering signals from heavy atoms that naturally exist in or are

purposely introduced into the protein. The anomalous scat-

tering is very weak and only accounts for less than 5% of the

diffraction intensity in most cases. This kind of weak signal can

be easily lost during data processing if experimental error is

not accurately treated and corrected, especially for crystals

with moderate and low diffraction quality and ability. For the

SAD method using single-wavelength anomalous signals from

light atoms such as sulfurs in native proteins (Hendrickson &

Teeter, 1981; Wang, 1985; Dauter et al., 1999) high data quality

is even more critical because the anomalous signal only

accounts for less than 1% of the diffraction intensity.

The diffraction intensity of biological macromolecular

crystals decreases with cumulative exposure time owing to

radiation damage during data collection. To put the intensities

on a common scale, in the 1960s Hamilton, Rollett and Sparks

introduced a scaling algorithm that applies a pair of constant

factors (S, B) to all observed reflections on each image

(Hamilton et al., 1965). Here, S is the scaling factor and B is

the isotropic factor intent on correcting resolution-dependent

errors from crystal decay and absorption. The set of refinable

parameters {S(i), B(i)|i = 1, number of frames} is then deter-

mined by minimizing the target function (intensity differences



between the symmetry-equivalent reflections). While this

simple algorithm (denoted hereafter as ‘isotropic scaling’ or

ISOS) works adequately for scaling the data, it does not

effectively correct experimental error. Programs imple-

menting the ISOS algorithm include SCALEPACK/HKL2000

(Otwinowski & Minor, 1997) and SCALA (with ‘batch’ scaling

option; Evans, 2005). To deal with the anisotropy, the isotropic

scaling was modified by replacing the isotropic B factor with

the empirical spherical harmonic functions (Blessing, 1995),

which is denoted hereafter as ‘empirical spherical harmonic

scaling’ or ESHS. Empirical spherical harmonic scaling has

been implemented by the programs SCALEPACK, X-GEN

(Howard, 2000), SADABS (Sheldrick, 2000), SCALA (with

‘secondary’ scaling option) and d*TREK (Pflugrath, 1999).

Recently, Otwinowski proposed the use of the exponential

function instead of the spherical harmonics (Otwinowski et al.,

2003), which has not yet been seen to be used. Another

significant modification of isotropic scaling was made by

applying a scale factor to each of a fixed number of points on

the detector surface (Kabsch, 1988). The scale factor for a

reflection is evaluated as the weighted average of all these

factors. To make the scale factor position-dependent and vary

with reflections in the detecting space, it has to employ a pre-

defined weighting scheme. This algorithm is denoted hereafter

as ‘detector scaling’ or DETS. It overcomes, to some extent,

the insufficiency of other algorithms described above. One

limitation of this algorithm is that the explicit pre-defined

weighting function may not fit various kinds of diffraction-

experiment errors (Fu et al., 2000, 2002). In addition, it does

not provide a method to check the validity of the error model.

Programs using ‘detector scaling’ include XDS (Kabsch, 1988)

and SCALA (with ‘detector’ scaling option). Owing to these

limitations, DETS has not shown any advantage in general use

(Evans, 2005), except for scaling data from soft X-ray

diffraction (Mueller-Dieckmann et al., 2004). These algorithms

used in the current existing programs have been derived with

some modification from ‘isotropic scaling’, which emphasizes

the scaling instead of experimental error correction. They all

employ a modeling approach that tries to simulate the

experimental error by some explicitly pre-defined functions.

The explicit model described by a pre-defined specific function

may work appropriately for certain cases. However, the

experimental error is far more complicated owing to the large

number of variables in X-ray diffraction experiments on

biological macromolecular crystals.

To overcome the insufficiency of any pre-defined error

model, a model-free algorithm is proposed in this study to

more generally and efficiently correct experimental error. In

this algorithm, the experimental error is represented by a

symbolic function C(�, �, t) in the detecting space, where (�, �)

are the coordinates of a diffraction spot on the image and t

represents the data-collection time. The undefined error

function C(�, �, t) will be determined from the data through

computer-aided analysis. The free Rmerge will be introduced for

a validity test of the determination of C(�, �, t). This model-

free algorithm is denoted hereafter as ‘three-dimensional

model-free error correction and scaling’ or 3DCS.

2. Method

In X-ray crystal diffraction experiments, reflection intensities

are not only determined by the crystal itself, but are also

affected by many other intrinsic and non-intrinsic errors. For

macromolecular crystals, these could include absorption,

anisotropic mosaicity, crystal defects, radiation damage, X-ray

beam instability, detector defects and other systematic errors.

Because there are no generally applicable formulae for all

these errors, the experimental error has to be corrected

through computer-aided data processing. The error correction

at this step greatly affects the quality of the reduced data,

which is critical for the solution of structures, especially for

weak anomalous data. The explicit error models used by the

current existing data-processing programs may make physical

sense and may be adequate in most cases. However, their

insufficiency and lack of generality may lead to inefficient

error description and correction for various diffraction

experiments. A generally applicable approach is needed to

more accurately correct the experimental error, especially for

data of moderate or low quality.

Most of the experimental errors in X-ray diffraction are too

complicated to be theoretically represented by generally

applicable formulae. For example, among the influences on

absorption are diffraction geometry, the nature of the mole-

cules in the crystal, solvent content, crystal shape, crystal

orientation, mounting scheme, X-ray wavelength and air in the

path. The complexity of these contributing sources for bio-

logical macromolecular crystals will make it impossible to

derive a general formula which is appropriate for various

kinds of crystals and different diffraction experimental

settings. However, no matter how complicated it is, a symbolic

three-dimensional function A(�, �, t) can be assigned to

represent the absorption correction without any intuitive or

theoretical assumption about the actual form or detail of the

function, where (�, �) are the coordinates of a diffraction spot

on the image and t represents the data-collection time.

Similarly, for each of other experimental errors that cannot

be theoretically formulated, we can assign a symbolic function.

We also know for sure that no matter how complicated and

what the sources of the experimental errors are, the total

effect of these errors is also three-dimensional and thus can be

represented as a symbolic function C(�, �, t),

Cð�; �; tÞ ¼ Að�; �; tÞ � Rð�; �; tÞ � Xð�; �; tÞ �Dð�; �; tÞ

� Sð�; �; tÞ � . . . ; ð1Þ

where A(�, �, t) represents absorption, R(�, �, t) radiation

damage, X(�, �, t) X-ray source defects, D(�, �, t) detector

defects and so on. The reflections can be corrected and scaled

by

Ij ¼ Cð�; �; tÞI0
j ; ð2Þ

�j ¼ Cð�; �; tÞ�0
j þ I0

j �c: ð3Þ

HereðI0
j ; �

0
j Þ and (Ij, �j) are the intensity and standard devia-

tion of the jth reflection before and after applying error

correction. Although the formula of this three-dimensional
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error function C(�, �, t) is not known at the start, it can be

parameterized and determined from the data in a least-

squares procedure that minimizes the target function �2 (4).

The three-dimensional error function C(�, �, t) thus deter-

mined will carry the characteristics of the experimental error

and be unique for the data set.

To parameterize the error function, all images from one

continuous batch can be viewed as a stack of consecutive

frames equally separated in t, which can be divided into

sectors and further divided into small angular and radial bins

defined relatively to the detector surface. In other words, the

(�, �, t) space is divided into Nt�Na�Nr blocks. Nt, Na and Nr

are the number of sectors, number of angular bins and number

of radial bins, respectively. A refinable parameter is assigned

to each dividing edge of these blocks. Thus, the total number

of parameters to be solved in the least-squares procedure is

Nt � Na � Nr. The correction factor for each reflection is

evaluated from the parameters on the surrounding edges by a

linear interpolation of the surrounding parameters. The entire

data set is composed of one or more such stacks. The para-

meterization of the error function is important in the imple-

mentation of the 3DCS algorithm. The finer the division of

(�, �, t) space, the better the description of experimental error.

However, the finer division will lead to a larger number of

parameters to be determined, which will reduce the data-to-

parameter ratio in the least-squares procedure. To validate the

parameterization and solution of the error function, a subset

(by default 5%) of the unique reflections is randomly selected

to calculate the free Rmerge. These reflections are not used in

determining the error-correction function, but will still be

scaled and output. The remaining reflections are used in a

robust least-squares refinement procedure to determine

C(�, �, t) by minimizing the �2 function (Hamilton et al., 1965)

�2 ¼
PN
i¼1

PNi

j¼1

ðIj � IiÞ
2=�2

j ; ð4Þ

Ii ¼
PNi

j¼1

WjIj

�PNi

j¼1

Wj; ð5Þ

Wj ¼
1

ðE1�
2
j þ E2I2

j Þ
; ð6Þ

where N is the number of unique reflections, Ni is the number

of equivalents for the ith unique reflection and ðIj; �
2
j Þ are the

intensity and intensity variance of the jth observed reflection

after correction and scaling by C(�, �, t).

At the start, E1 and E2 are initialized as 1.0 and 0.0,

respectively. The error function C(�, �, t) is then solved by

least-squares minimization. E1 and E2 are automatically

determined by another least-squares refinement to make the

following function approach 1.0 (�2 analysis),

h�2ðE1;E2Þi ¼
1

N

PN
i¼1

PNi

j¼1

ðIj � IiÞ
2

PNi

j¼1

ðE1�
2
j þ E2I2

i Þ

: ð7Þ

The new C(�, �, t), E1 and E2 values are then put into the next

cycle of minimization. As the minimization converges, the

(Ii, �i) and/or [I(+)i, �(+)i, I(�)i, �(�)i] (if anomalous signals

are requested) of each unique reflection will be evaluated.

Finally, the set of unique reflections or the whole set of all

reflections (if requested) after experimental error correction

and scaling will be saved for the structure-solution process.

3. Tests

The ‘three-dimensional model-free error correction and

scaling’ method was implemented into the computer program

PROSCALE (Fu et al., 2000), which is part of the PROTEUM

software suite (Bruker-AXS, Inc.) running on MS Windows.

Recently, another program 3DSCALE was developed using

standard C/C++ to support multiple platforms including Unix

and Linux. In both PROSCALE and 3DSCALE, the three-

dimensional error function is automatically parameterized as

described in x2. By default, Nt, Na and Nr are set to 8/OscAng,

5 and 2 (where OscAng is the oscillation angle in degrees),

respectively. The defaults were obtained through program

training against a variety of data sets of different quality and

work well. However, the user can easily select a different

parameterization scheme if desired. PROSCALE has been

used by different groups in error correction and scaling of

integrated data to solve structures (such as Schubot et al.,

2004; Sims et al., 2003; Vanhooke et al., 2004; Wu et al., 2005;

Lee et al., 2004; Chen et al., 2005; Ren et al., 2005; Thoden &

Holden, 2005). Listed in the next section are test results on

some data sets comparing different scaling methods.

3.1. Test data

3.1.1. Zn-free insulin. SAD data were collected from a Zn-

free insulin crystal (space group I213, a = 78.089 Å) in the

resolution range 39.0–2.15 Å using a Bruker Proteum-R CCD

(a.k.a. Smart 6000) detector mounted on a Rigaku RUH3R

rotating-anode generator using 5 kW focused (MSC/Blue

confocal optics) Cu K� X-rays. A total of 900 0.2� oscillation

images were recorded using an exposure time of 1 min. The

intensities were indexed and integrated using Bruker’s

PROTEUM data-reduction package. The anomalous scat-

tering from S atoms was used to solve the structure.

3.1.2. C-terminal domain of a corrinoid-binding protein
(CBP). The protein contains 125 amino acids, with an unknown

number of Co site(s). SAD data were collected from one

crystal (space group P21212, a = 55.52, b = 62.65, c = 34.45 Å) to

a resolution of 2.30 Å using a Bruker Proteum-R CCD

detector mounted on a Rigaku FRD generator using Cu K�
X-rays with Rigaku/MSC HiRes2 optics. A total of 1200 0.3�

oscillation images were recorded using an exposure time of

30 s. The intensities were indexed and integrated using the

Bruker PROTEUM data-reduction package.

3.1.3. Pfu631545. The Se-containing protein contains 133

amino acids (including an N-terminal 6-His tag) with one Se

site. MAD data were collected (space group P21, a = 36.35,

b = 61.09, c = 51.58 Å, � = 97.62�) to about 2.0 Å resolution on
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a MAR CCD 225 at APS SERCAT beamline 22-ID at three

wavelengths: 0.97828, 0.97941 and 0.98086 Å. However,

phasing with the 180� SAD data collected at 0.97941 Å turned

out to give the best initial model. The SAD data, integrated

using HKL2000, will be used in the test.

3.2. Results

Each of the above integrated data sets was scaled using

different algorithms and reduced to separate unique data sets.

The error-correction and scaling algorithms tested include

ISOS, ESHS, DETS and 3DCS. ISOS was performed by

SCALA ‘batch mode’ with ‘bfactor on’. ESHS was performed

by SCALEPACK on Pfu631545 data and by SADABS on

insulin and CBP data. The default up to fourth-order and

sixth-order harmonics were used with SCALEPACK and

SADABS, respectively. DETS scaling was performed by

SCALA ‘detector 3’ mode with ‘rotation spacing 5’. 3DCS was

performed by 3DSCALE with defaults described above. E1

and E2 in (6) were manually adjusted to make �2 approach 1.0

in SCALEPACK scaling. This was performed automatically

by other programs mentioned above. Finally, each unique data

set obtained was used to solve the structure using SGXPRO

(Fu et al., 2005), which searches both program and parameter

space to try building the structural model using SHELXD

(Schneider & Sheldrick, 2002), ISAS (Wang, 1985), SOLVE

(Terwilliger & Berendzen, 1999), RESOLVE (Terwilliger,

2000) and ARP/wARP (Perrakis et al., 1999) for heavy-atom

site searching, handedness test, phasing and autotracing,

respectively. The results are listed in Table 1.

As expected, the insulin data are of high quality. There is no

significant difference between the unique data sets from the

four different scaling algorithms tested (see Table 1). All four

data sets produced almost complete initial structure models

with over 94.1% of the amino-acid residues automatically

traced. The CBP data has moderate quality. The reduced data

sets from the four different algorithms all produced traceable

electron-density maps. However, the three-dimensional

model-free error correction and scaling generated a better

electron-density map, leading to a more complete initial

structure model autotraced by RESOLVE. The model has

been used to complete the structure which was refined against

a higher resolution data set (see PDB entry 1y80). In the

Pfu631545 case, which has low-quality data, 3DCS scaling led

to a traceable electron-density map with 60.2% of the amino-

acid residues automatically traced. The structure has been

solved from this initial model with help of manual fitting (see

PDB entry 1ztd). Using the unique data sets from the ISOS,

ESHS and DETS algorithms, autotracing built 47.4, 55.3 and

53.0% of the residues, respectively. However, the connectivity

is lower than that from 3DCS. In other words, only small

fragments were built, which is one indication of a poor

structure model and electron-density map. In fact, the

electron-density map from DETS is hard to trace and that

from ISOS is not traceable at all. Fig. 1, drawn using XTAL-

VIEW (McRee, 1992), shows the electron-density maps with

the autotraced structure models built by using the unique data

sets from the four tested algorithms.

4. Discussion

The 3DCS algorithm emphasizes the experimental error

correction during scaling by using a general symbolic three-

dimensional error function C(�, �, t) that is determined from

the data through computer-aided minimization of the target

function. Compared with modeling approaches, 3DCS does

not make any theoretical or intuitive assumption about the

variation of experimental error in the detecting space. The

C(�, �, t) thus determined will uniquely represent and correct

the experimental error in the data. It overcomes the insuffi-

ciency and lack of generality which may arise from the

imprecise description of experimental error by explicitly pre-

defined error model such as the spherical harmonic functions.

In two of the test cases with moderate or low data quality,

3DCS scaling produced data that led to better electron-density

maps and initial structure models, which have made the

structure-solution processes easier. The free Rmerge values are

0.035, 0.051 and 0.071 for insulin, CBP and Pfu631545 data,

respectively. They agree well with the Rmerge values calculated

from the working sets, which are 0.034, 0.049 and 0.070,

respectively (see Table 1). This good agreement suggests that

the three-dimensional error functions determined in the least-

squares procedure are valid in correcting experimental errors

of the diffraction data. The 3DCS scaling provides a robust

approach generally applicable to correct experimental errors

in various X-ray diffraction data by using a model-free algo-

rithm.

As in any least-squares procedure, a finer detecting-space

sampling is better to describe the experimental error.

However, finer division will reduce the data-to-parameter

ratio, which may affect the accuracy of the process. The default

sampling obtained through program training against a variety
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Table 1
Results in solving the structures from test data.

‘Method’ gives the algorithms used for experimental error correction and
scaling (see x3.2 for details). The values in parentheses are for the highest
resolution shell: 2.24–2.15 Å for insulin, 2.45–2.30 Å for CBP and 2.09–2.0 Å
for Pfu631545. Ntr and TR% are the number and percentage of amino-acid
residues automatically traced by RESOLVE or ARP/wARP during the
structure-solution process.

Method Rmerge

Complete-
ness (%) Redundancy I/�(I) Ntr TR%

Insulin
ISOS 0.057 (0.103) 96.9 (83.6) 15.8 (3.8) 50.4 (7.7) 48 94.1
ESHS 0.035 (0.077) 96.7 (81.3) 15.8 (3.7) 57.4 (13.6) 49 96.1
DETS 0.034 (0.089) 96.9 (83.6) 15.8 (3.8) 82.1 (12.6) 49 96.1
3DCS 0.034 (0.074) 96.9 (82.0) 15.8 (3.8) 60.6 (11.5) 49 96.1

CBP
ISOS 0.053 (0.098) 99.2 (92.1) 7.7 (6.3) 28.4 (15.3) 95 76.0
ESHS 0.046 (0.067) 99.0 (92.0) 7.5 (6.2) 33.5 (17.4) 88 70.4
DETS 0.049 (0.061) 99.2 (92.1) 7.7 (6.3) 37.7 (19.8) 93 74.4
3DCS 0.049 (0.063) 99.2 (92.1) 7.6 (6.4) 34.0 (16.8) 102 81.6

Pfu631545
ISOS 0.084 (0.281) 99.2 (96.0) 3.5 (3.2) 17.9 (4.1) 126 47.4
ESHS 0.072 (0.276) 99.3 (96.1) 3.6 (3.2) 17.0 (3.2) 147 55.3
DETS 0.077 (0.275) 99.2 (96.0) 3.5 (3.2) 18.5 (4.2) 141 53.0
3DCS 0.070 (0.254) 99.2 (96.1) 3.5 (3.2) 12.2 (3.3) 160 60.2



of data sets works well. Sampling variation around the default

did not show a great impact on the final results in the three test

cases (see Table 2). Careful design of the parameterization

scheme can also enhance the data-to-parameter ratio, which

makes the least-squares procedure more stable. For example,

the total numbers of parameters with the default sampling in

3DCS scaling are 220, 450 and 210 for insulin, CBP and

Pfu631545 data, respectively. In ISOS scaling with two para-

meters {S, B} for each frame, these numbers were 1800, 2400

and 360, respectively. ESHS may also need more parameters if
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Table 2
Effects of detecting-space sampling.

Nt, Na and Nr represent the number of sectors, number of angular bins and number of radial bins, respectively. N is the total number of parameters used in
determining C(�, �, t). Ntr and TR% are the number and percentage of amino-acid residues automatically traced by RESOLVE or ARP/wARP.

Insulin CBP Pfu631545

Nt Na Nr N Ntr TR% Nt Na Nr N Ntr TR% Nt Na Nr N Ntr TR%

11 5 2 110 48 94.1 22 5 2 220 102 81.6 10 5 2 100 139 52.3
22 3 2 132 49 96.1 45 3 2 270 99 79.2 21 3 2 126 138 51.9
22 5 2 220 49 96.1 45 5 2 450 102 81.6 21 5 2 210 160 60.2
22 5 3 330 50 98.0 45 5 3 675 102 81.6 21 5 3 315 159 59.8
22 5 4 440 49 96.1 45 5 4 900 99 79.2 21 5 4 420 165 62.0
22 10 2 440 49 96.1 45 10 2 900 107 85.6 21 10 2 420 147 55.3
44 5 2 440 50 98.0 90 5 2 900 100 80.0 42 5 2 420 156 58.6
89 5 2 890 49 96.1 180 5 2 1800 101 80.8 85 5 2 850 145 54.5

Figure 1
The electron-density maps and autotraced models of Pfu631545 from the structure-solution process using the unique data sets scaled by the four
different algorithms. (a) Data from ISOS scaling. (b) Data from ESHS scaling. (c) Data from DETS scaling. (d) Data from 3DCS scaling.



frame grouping, as implemented in SCALA and 3DSCALE, is

not used.

Finally, the current implementation of 3DCS uses the

traditional least-squares target (4) to determine the error

function C(�, �, t). A maximum-likelihood target may be used

instead if proved to be beneficial.

The author thanks Dr Bi-Cheng Wang for encouraging

discussions during this study and also thanks Dr John Rose

and researchers at the Southeast Collaboratory for Structural

Genomics for use of test data.
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