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Abstract 

The identification of twofold axes is straightforward if 
the cell is based on three of the shortest lattice 
translations. The distribution of twofold axes in space 
fixes the lattice symmetry and most conventional cell 
edges. A program based on this approach has been 
written. It works for the seven cases with minimum 
branching of the algorithm. 

Introduction 

The traditional way of assessing the metric symmetry 
of a lattice is based on numerical relationships in the 
matrix of scalar products of the Niggli-reduced cell. It 
is summarized in § 5.1 of International Tables,[or X- 
ray Crystallography Vol. 1 (1969), pp. 530--535. The 
editions prior to 1969 do not contain this section. 
Forty-four cases are distinguished and a correspond- 
ing computer program would therefore require a 
considerable amount of branching and would be likely 
to suffer from the drawbacks commonly associated 
with such a structure. 

The present approach is based on the identification 
of twofold axes according to the following three 
criteria which are developed in Appendices I, II and III. 

(1) A row with period t is a twofold axis of a lattice 
if and only if there is a reciprocal-lattice row with 
period ~ such that t x ~ = 0  and t . ' c=  1 or 2. 

(2) If the lattice is referred to three of its shortest 
non-coplanar translations, the moduli of the Miller 
indices of such direct and reciprocal rows cannot 
exceed 2. 

(3) A lattice symmetry is uniquely determined by the 
space distribution of its twofold axes. 

Application of the above remarks to the problem 

The first two remarks provide a simple way of finding all 
thc twofold axcs in the lattice to be studied. Comparison 
of their distribution in space with the well-known 
distributions of even-order symmetry axes (=twofold 
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axes) in six of the seven possible lattice symmetries 
allows the lattice symmetry to be identified according 
to the third criterion. This process places the lattice in 
a conventional orientation and the choice of rows to 
be selected as edges of the conventional cell is guided 
by the coincidence of lattice rows with pre-determined 
symmetry axes. This process is described in more 
detail under The algorithm. 

A difficulty associated with the problem itself is that 
the metric symmetry of a given lattice is to be found 
using measured cell parameters. Uncertainties are 
associated with such measurements, therefore the 
collinearity of the direct and reciprocal-lattice rows 
can only be determined within the limits of experimen- 
tal error. The angle 6 between these rows is calculated 
with tan 6 =  I(t × z)l/](t. 1:)1. If this angle is small but still 
larger than the limits of experimental error on angles, 
the row is a pseudo-axis of metric symmetry. If6 is less 
than the limit, the row can be a true or a pseudo- 
symmetry axis. In other words this approach, in 
common with all others, might attribute to the lattice 
a metric symmetry higher than its true symmetry. 

The calculation of the 6 angle is achieved by 
referring the direct and reciprocal lattices to the same 
Cartesian system as shown by Rollett (1965) by means 
of the matrix 

a sin # sin 7" 0 0 
L =  - a sin /3 cos T* b s i n a  0 

a cos/3 b c o s ~  c 

The orthogonal components t of a direct lattice vec- 
tor U are given by t = L  U while the orthogonal 
components ~: of a reciprocal-lattice vector h are 
z = (Lr ) - lh  and it is then a simple matter to evaluate 6 
knowing t and "c. 

The algorithm 

The algorithm for deriving the conventional cell is 
shown in Table 1. The sequence of operations is as 
follows. 

The input cell is first reduced to a primitive set of 
translations retaining its handedness. The three short- 
est non-coplanar translations are found by Buerger 
reduction (Buerger, 1960). In the ambiguous cases, e.g. 

0021-8898/82/030255-05501.00 :~; 1982 International Union of Crystallography 



256 DERIVATION OF THE AXES OF THE CONVENTIONAL UNIT CELL 

Table 1. The algorithm 

Delete 
worst-fitting 

twofold axes used 

Y e s  

Read cell parameters and lattice mode 

Get a right-hand primitive cell based on 3 of the shortest non-coplanar translations 
,L 

r 
Generate Miller indices of direct and reciprocal rows (moduli up to 2) 

It x xl k  alc la'   :arc 
If((5 <limit and It-~l--1 or 2) store indices, direction cosines and (5 

~No  ~--  Miller indices exhausted? 

System = cubic 
l 

Get direction cosines of even-order axes and conventional axes for system 

No match 
Match the observed 2 axes with system even-order axes~ 

Get next system 

Get the conventional axes that are along even-order axes 

C? ~ Yes 

H or 7"?. ~ Keep the solution with shortest a 

R?--* Get c_L ab and keep the solution for which 
the point at I, ½, ½ is a node 

O? / 
M?---a, c shortest translations _L b --~Extra conventions 

A?~a,  b, c=3 shortest translations 
4, 

Get lattice mode from the primitive indices of conventional axes 

Print results 

3ma x larger than experimental accuracy on angles? 

STOP 

Buerger 
reduction 

Identification 
of twofold 
axes 

t Match with twofold axes 
in a crystal 
system 

1 

t Application of the 
conventions 

J 
Lattice-type 
recognition 

I Output 
~ of 

results 

when the third- and fourth-shortest translations are of 
equal lengths, it does not matter which triplet is 
actually selected. Gruber (1973) has shown that when 
the Buerger-reduced cell is not unique, the triplets on 
which the different cells are based have the same 
lengths as the triplet on which the Niggli cell is based. 
The discussion in Appendix II shows the existence of 
strictly shorter translations in the cases where indices 
of three or more would be required to index the twofold 
axis or the plane perpendicular to it. The labeling of the 
cell edges does not matter as long as the handedness of 
the cell is preserved. The matrix B of correspondence 
between the direct indices Us in the Buerger-reduced 
cell and the indices UI in the input cell is given by UI 
= BUs. The rows of the B matrix are the indices of the 
edges of the Buerger-reduced cell. 

The twofold axes are then found in the Buerger cell 
by generating indices of real and reciprocal rows U 
and h with moduli up to 2. If U. h = 1 or 2, the 6 angle 

is calculated. If this angle is less than some arbitrary 
limit for pseudo symmetry, e.g. 3 ~, the indices U of the 
direct row, the direction cosines of its period and the ,6 
angle are kept. 

If nine or more twofold axes have been found, a 
match is sought between the well-known space distri- 
bution of even-order axes in the cubic lattice sym- 
metry and the observed distribution. The match is 
based on the similarity of angles between symmetry 
directions calculated using their direction cosines. If 
all cubic directions have a counterpart in the lattice 
studied, a solution has been found. The rows to be selec- 
ted as edges of the conventional cell are the ones which 
match the three fourfold axes forming a right-handed 
system. The correspondence matrix C between the 
conventional indices U c and the indices U s with the 
Buerger cell is given by U s =  CUo Its rows are the 
indices of the conventional axes in the Buerger-cell 
axial system. The correspondence matrix D of the 
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input indices and the conventional indices is therefore 
given by Ut = DUc with D = BC. It follows that the 
correspondence between the input and conventional 
reciprocal indices h I and h c is h I =(DT)-lhc . 

The Bravais type of the conventional cell is found 
from the C matrix. If the determinant of C is 1, 3 or 4 
the cell is respectively P, R or F centered in general 
(obviously, no R-centered cubic lattice will be found). 
If the determinant is 2, the indices of the conventional 
direct nodes 011, 101, 110 and 111 with the primitive 
Buerger-reduced cell are calculated using UB =CUc.  If 
they are not coprime, the conventional cell is re- 
spectively A, B, C or I centered. 

The input indices of the direct rows selected to be 
the conventional axes are printed together with the 
periods along these rows and the angles they make 
with one another: they are the parameters of the 
conventional cell. The indices h I of the axes of the 
reciprocal of the conventional cell are also output. 

The largest 0 angle used in the solution, 6 . . . .  is 
printed. If this angle is no larger than the experimental 
error limit, the solution is called 'metrically cubic' and 
the search is stopped. If the angle is larger, the solution 
is called 'pseudo cubic' and the search is resumed after 
deleting from the list of observed twofold axes all rows 
with 6 angles larger than or equal to 6m~x. This ensures 
that further solutions can only be better fits. 

Hexagonal, rhombohedral,  tetragonal, orthorhom- 
bic, monoclinic and anorthic symmetries (h, r, t, o, m 
and a) are then examined in turn until a metric 
agreement is found. Contrary to the cubic case, several 
possibilities exist in these six cases for the correspon- 
dence between symmetry elements and conventional 
cell edges. In the h, r and t cases two possibilities are 
due to the symmetry itself: the symmetry is invariant 
under a 30, 60 or 45: rotation about the z axis 
(assuming an hR cell for the rhombohedral lattice; see 
Donnay, 1977), although such rotations are not sym- 
metry elements of the lattice. Consequently, two possi- 
bilities have to be examined in this case and the one 
giving the smallest value of a is retained for h and t 
symmetries. The solution for which the point 2, ½, ½ in 
the hexagonal cell corresponds to a lattice node is kept 
for r symmetry, which ensures the obverse setting of 
the hexagonal cell in the rhombohedral lattice. For 
orthorhombic symmetry, a, b and c are taken along the 
three mutually perpendicular twofold axes. For mono- 
clinic symmetry, the two shortest translations in the 
plane perpendicular to the twofold axis are selected to 
be a and e. For triclinic symmetry, the edges of the 
Buerger-reduced cell are accepted. In the last three 
cases, the labeling of the axes requires extra con- 
ventions which are applied separately. 

Discussion 

This approach is essentially geometrical and is based 
on a simple criterion to identify twofold axes. Starting 

from any cell based on three of the shortest lattice 
translations, it finds the metric symmetry and most 
conventional cell edges by superposition with the 
even-order axes present in six of the seven well-known 
possible cases. It then applies the metric conventions 
in the o, m and a cases. Finally, the Bravais type of 
the conventional cell is derived. 

This approach separates the logical steps involved 
in the problem permitting more flexibility in the 
solution than the approach in International TablesJor 
X-ray Crystallography (1969), in which the metric 
conventions of the Niggli-reduced cell are inter- 
mingled with an arbitrary selection of possible lattice 
modes in order to limit the number of cases to 44. 
The resulting cell has in some cases to be transformed 
in order to conform with a consistent set of metric 
rules [see footnote in International Tables.lor X-ray 
Crystallography Vol. I (1969), p. 535]. In the present ap- 
proach, the metric conventions are a separate step in 
the process prior to obtaining the lattice mode. This 
step can be altered independently from the system and 
lattice-mode recognition. 

The handling of pseudo symmetry is straightforward 
in the present approach. When searching the crystal 
systems ranked in the order c, h, r, t, o, m, a, each time a 
solution is found, all the twofold axes with a 6 angle not 
smaller than the largest one used in the match are 
deleted from the list of twofold axes, ensuring that only 
better solutions can be found. For example, if a crystal is 
pseudo-tetragonal but metrically monoclinic (Table 2) 
only the better of the two orthorhombic pseudo-cells 
will be mentioned with the two best of the five implied 
monoclinic cells. The process converges towards the 
metric symmetry while mentioning increasingly better 
solutions of decreasing symmetry until a metric agree- 
ment is found. 

It should be noted that, in the case of pseudo- 
symmetry, the 6 angle is the obliquity of a possible 
twin law with index 1 because the rotation by 180 
about the row U or about the normal to the plane h 
would approximately restore all the lattice nodes. The 
list of 'possible twofold axes' in Table 2 is truly an 
exhaustive list of the twofold axes augmented by all 
the possible twin laws of index 1 up to the arbitrary 
maximum obliquity of 3 .  The largest obliquity in a 
solution can be used as a quantitative criterion for 
pseudo-cells in the same way as it is used for twin laws. 

Finally, the present approach is well suited for 
computer-controlled diffractometers. The NRC 
Fortran diffractometer program contains the present 
approach as an overlay and checks that the trial cell 
used obeys some set of conventions before diffracted 
intensity measurement. If the cell used is uncon- 
ventional, the crystal can be reset or not in the 
conventional orientation at the wish of the user. This 
resetting can be performed automatically because the 
program derives the correspondence matrices between 
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Table 2. The computer output 
The column labeled 'dot product '  is It. x] and that labeled "vector product '  is in fact arctan(l t  x rl It.r[) in degrees. 

INPUT  C E I L :  4. 0 0 0  4. 4 7 2  4 5 8 3  79.  0 3 0  6 4  130  
A BUERGE-R CEL l_  

4. 0 0 0  4. 4 7 2  4. 5 8 3  79  0 3 0  6 4  1 3 0  
THE I N P U T - T O - B U E R O E R  CELL MATRIX  

1 O 0 0 0 . 0  
0. o 1 o 0. o 
0 0 0 . 0  1 . 0  

64. 150 LATTICE MODE P 

64.150 

POSSIBLE 2-FOLD AXES: 

RQNS 
DIRECT RECIPROCAL 

l o - 2  0 o 1 
o 1 - 1  o I -1 
1 - 2  0 0 1 0 
1 --I -I 0 1 1 
1 0 0 2 1 1 

PRODUCTS 
DOT VECTOR 

2 0.005 
I 480 

2 0 . 7 1 4  
2 1 . 4 8 2  
2 0 . 7 1 4  

PSEUDO TETRAgONAL I 
A = O. 0 1 0 -i.0 5.7622 ALPHA= 
B = I 0 -I 0 -I 0 5.7625 BETA = 
C = -I.0 0 0 0 0 4. 0000 OAMMA= 

PSEUDO ORTHORHOMBIC F 
A = - i . 0  0 0 0 C 
B = 1 0 - 2 0  0 . 0  
C = - 1 . 0  0 0 2 . 0  

PSEUDO 
A = - I . 0  0 . 0  0 0 
B = 1 . 0  - 2 . 0  0 0 
C = 0 . 0  0 . 0  1 . 0  

METRICALLY 
A = -1 0 0 . 0  0 0 
B = - I . 0  0 0 2 0  
c = 0 0 ! o  o o 

4.0000 ALPHA= 
8.0497 BETA = 

8.2474 gAMMA= 
MONOCLINIC C 

4.0000 ALPHA= 
8.0497 BETA = 

4. 5830 OAMMA= 

MONOCLINIC C 
4.0000 ALPHA= 

8.2474 BETA = 
4 . 4 7 2 0  OAMMA= 

IdA× DELTA 1 . 4 8 2  
90  501 A *  = 0 . 0 0 0  0 . 5 0 0  - 0 .  5 0 0  
8 9  5 0 5  B *  = 0 . 0 0 0  - 0 .  5 0 0  - 0 .  5 0 0  
88.610 C* = -I.000 -0. 500 -0. 500 

MAX DELTA 0 . 7 1 4  
9 0 . 0 0 3  A *  = - 1 . 0 0 0  - 0 .  5 0 0  - 0  5 0 0  
89.996 B~ = 0 . 0 0 0  - 0 . 5 0 0  0 . 0 0 0  
90.714 C* = O. 000 0.000 0. 500 

MAX DELTA 0.714 

8 9 . 6 9 2  A *  = - 1 . 0 0 0  - 0 . 5 0 0  0 . 0 0 0  
1 1 5 . 8 7 0  B~ = O. 0 0 0  - 0 . 5 0 0  0. O00 

9 0 . 7 1 4  C* = 0 . 0 0 0  0 . 0 0 0  1 . 0 0 0  
MAX DELTA 0 . 0 0 5  

8 9 . 9 9 9  A* = -1.000 0 . 0 0 0  -0.500 

1 1 5 . 8 5 0  B* = 0 0 0 0  0 . 0 0 0  0 . 5 0 0  
89.996 C* = O. 0 0 0  1. 0 0 0  0 . 0 0 0  

both the direct and reciprocal input and conventional 
cells as explained above. At the same time, eventual 
metric pseudo-symmetry of the lattice is disclosed 
for later investigation. Such an approach ensures, 
for example, that triclinic lattices will be referred to 
their three shortest direct translations, in agreement 
with all accepted sets of conventions. A surprisingly 
high proportion of recently published triclinic struc- 
tures do not follow this unanimously accepted rule. 

Conclusion 

A geometrical derivation of the conventional cells has 
been obtained which can accommodate any set of 
metric conventions for the orthorhombic, monoclinic 
and triclinic lattice symmetries. It does not require the 
use of the Niggli reduced cell and avoids the extensive 
branching of algorithms based on the approach in 
International Tables for X-ray Crystallography (I 969). 
The program runs on PDP8-E,  P D P l l ,  UNIVAC 
1100 and CDC 7400 computers. 

I thank Dr A. D. Mighell from NBS, Washington, 
USA, for the programs and especially the test deck 
used at NBS. I also thank Drs L. D. Calvert and E. J. 
Gabe  for fruitful discussions. 

APPENDIX ! 
Condition for a row to be a twofold axis 

A twofold axis is at the same time a direct-lattice row 
and a reciprocal-lattice row because the sum of two 
lattice vectors v and v' related by a 180 rotation about 
the symmetry axis is a lattice vector V parallel to the 
axis (Fig. la). This holds for direct lattice vectors as 
well as reciprocal ones. This collinearity can be ex- 
pressed by the relation t x ~:=0, where t and T are 

2- fo ld  axis 

..1 

i 
/ 

V '" -% \ 

4 

/ 

I 

(a) (b) 

Fig. 1. (a) A twofold axis is parallel to a lattice translation. (b) The 
scalar product of the direct and reciprocal periods along an even- 
order axis can only be 1 or 2. 
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respectively the direct and the reciprocal periods 
along the axis. The existence of a reciprocal row along 
the symmetry axis implies the existence of direct- 
lattice planes perpendicular to it. If we consider a 
lattice vector v joining two neighboring planes, the dot 
product v. x is equal to 1 because the reciprocal period 
is the inverse of the interplanar distance in the direct 
lattice. The same relation is true for v' obtained by 
rotating v by 180 about the axis. The vector V = v + v' 
is either the period along the axis or twice that period 
because V is a lattice vector crossing only one lattice 
plane at a point N which can be, but which is not 
necessarily, a lattice node. As V. r is equal to 2, this 
implies t . ' c=  1 or 2 (Fig. lb). 

Conversely, the conditions t × x = 0 and t. 1: = 1 or 2 
imply that the lattice planes perpendicular to the 
collinear direct and reciprocal rows are mirror planes 
because the levels +n  and - n  of this family of direct 
planes are separated by 2n interplanar distances, i.e. 
an integer number of periods of the direct row which is 
perpendicular to them. Owing to the center of sym- 
metry in all lattice nodes, it follows that the row is a 
twofold axis. 

Conclusion 

A lattice row with period t is an even-order sym- 
metry axis of a lattice if and only if there is a 
reciprocal-lattice row with period ~ siach that t × x = 0 
with t . ' c=  1 or 2. 

A P P E N D I X  II 
The indices of the direct and reciprocal rows along a 

twofold axis cannot be larger than 2 

The direct lattice is assumed to be referred to a 
Buerger-reduced cell, i.e. to its three shortest lattice 
translations. It is shown below that this implies that 
the moduli of the Miller indices of its even-order 
symmetry axes cannot be larger than 2. 

I I 

E" 
I 

t 

Fig. 2. The three shortest non-coplanar translations can only end in 
the levels 0, 1 or 2 of the family of lattice planes perpendicular to a 
twofold axis. 

A. The reciprocal row 

The indices of the reciprocal row are equal to the 
indices of the family of direct lattice planes per- 
pendicular to it. From the definitions, the ith Miller 
index of the plane is the sequence number of the level 
of that family of planes in which ends the ith cell 
translation. If a cell translation ends in level 
j with j > 2 ,  a strictly shorter but non-zero translation 
exists in level 1 ifj is odd and in level 2 ifj is even, owing 
to the period along the twofold axis perpendicular to 
the planes (Fig. 2). As this would be contrary to the 
hypothesis that the cell is based on the three shortest 
translations, no Miller index of the reciprocal row can 
be larger than 2. 

B. The direct row 

No simple proof of this simple property could be 
devised for the direct row and a proof by mutually 
exclusive cases can be obtained from the author. The 
duality of the direct and reciprocal lattices cannot be 
used because the fact that the direct cell is based on the 
three shortest translations does not imply the same 
property for the reciprocal cell. 

Conclusion 

If the cell is Buerger-reduced, i.e. is based on three of 
the shortest non-coplanar lattice translations, the 
moduli of the Miller indices of the direct and reciprocal 
rows along its even-order axes cannot be larger than 2. 

A P P E N D I X  Ill 
The complete lattice symmetry is implied by the 

pattern of its even-order symmetry axes 

The following two statements are well-known theo- 
rems whose proofs can be found in textbooks: 
1. The normal to a plane containing p intersecting 
twofold axes is a p axis. 
2. In a lattice, perpendicular to an even-order axis 
there is a mirror plane. 

Remark 1 implies the existence of the threefold axes 
in the rhombohedral and cubic cases when the twofold 
axes have been identified. It allows one to label the 
even-order symmetry axes as twofold, fourfold or 
sixfold axes depending on the number of twofold axes 
perpendicular to them. 

Remark 2 then gives the complete lattice symmetry 
in the seven possible cases. 
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