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Abstract 

Most Patterson-search methods are based on func- 
tions measuring the coincidence of the observed Pat- 
terson function with the model Patterson function 
calculated as a function of some variables, e.g. the 
rotation angles in the case of the rotation function. 
In parallel with such methods, a new phase- 
refinement function based on the maximization of 
ZR(@)=Zn(En--(EH))Gn(@) as a function of the 
collectivity q) of phases of the reflections with large 
E values is presented, where E n - ( E n )  and Gn(@) 
are the Fourier coefficients of two Patterson-type 
functions, the first with the origin peak removed and 
the second taking into account the atomicity condi- 
tion. It will be shown how ZR(@) can be maximized 
by a new tangent formula actively using the small E 
values and not possessing any weighting factor. The 
utility of this formula is illustrated on the basis of 
two representative test examples. 

I. Introduction 

Direct interpretation of the Patterson (1935) function 
constitutes a simple way of solving crystal structures 
containing heavy atoms. However, the fact that many 
substances, such as organic compounds, do not con- 
tain heavy atoms seriously restricts its application. 

In the case where a related molecular fragment is 
available, the so-called Patterson-search methods can 
be applied. These methods use the known geometry 
of the fragment to compensate for the absence of 
strong individual Patterson peaks. One such method 
is the rotation function of Rossman & Blow (1962). 
Its most widespread use is for determining the relative 
orientation of a given search fragment in the unit cell 
of the unknown structure and can be expressed, for 
this particular case, in the form 

R(fl)  = V~ Po(u)Pmooe,(u, 1"1) du. (1) 
12 

R(~)  measures the coincidence of the observed Pat- 
terson function (Po) with the Patterson function of 
the fragment or model (Pmo0e0 computed as a func- 
tion of the rotational operator ~ ,  i.e. the three rotation 
angles. For the correct rotations, the values of R(I~) 
will be, in general, maximal. 
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Should no suitable molecular fragment be avail- 
able, the Patterson function can be interpreted using 
direct methods, provided that the intensity data 
extend to atomic resolution. This implies that the 
atomic peaks in the true and squared structures are 
discrete, so that the respective structure factors En = 
En exp i~on and Gn = Gn exp ithn will have similar 
associated phases ~0n- ~bn. This allows the modulus 
Gn to be expressed in terms of the collectivity q~ of 
phases of the set {K} of reflections with large E 
magnitudes, 

On(qb) = exp i~b-nGn 

=E Eh,En-h, cos (q~-n + q¥ + q~n-h,) (2) 
h '  

with h' and H - h ' ~  K. Now let Po(u) and ~(u, @) be 
the Patterson-type Fourier syntheses (Ramachandran 
& Raman, 1959) 

Po(u)=(1/V) ~ En exp (-2tri l l  • u), (3) 
H 

~(u, @)=(1/V)Y~ Gn(@)exp( -2 r r iH .u ) .  (4) 
H 

By analogy with the rotation function, the 'coin- 
cidence' function can be defined as 

Z ( ~ ) =  V~ Po(u)~(u, ~ ) d u  
I) 

=~, EnG. (~) .  (5) 
H 

Consideration in (5) of the reflections with large E 
values only, followed by substitution of (2) in (5), 
leads to the well known expression 

z ( ~ ) = E E  E-hE~,E~-h, COS(~_h+~,+~_h,). (6) 
h h '  

Fig. l(a) shows the observed Po(u) function and the 
f~(u, @) function, calculated with true phases, of a 
one-dimensional equal-atom model structure. Fig. 
l(b) shows the corresponding product function 
Po(u) x ~(u, @). It can be seen that the largest contri- 
bution to Z(@) is determined by the origin peak 0 
of Po and that the contribution due to the remaining 
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puted with these phases shows an origin peak larger 
than expected while the remaining part of ~ (u ,  q~) 
is, in general, incorrect. This problem is especially 
important in structures with symmorphic space 
groups. As demonstrated below, a simple solution to 
this problem is the maximization of Z R ( ~ )  instead 
of Z(qb). Since the origin peak of Po has been removed 
(Fig. 2a),  the structure is now solved by combination 
of the information of the nonorigin peaks of Po(u) 
with the structural restriction implicit in (2), i.e. the 
atomicity condition. Fig. 2(b) shows the correspond- 
ing product function. 

part, R, of Po is comparatively insignificant. If the 
E r i - (E I j )  are the Fourier coefficients of  the Po func- 
tion with the origin peak removed, then these two 
contributions can be written separately in the form 

Z(  ~ )  = Zo( ¢r,)+ ZR( ~ )  

= (EH) E GI-I( • ) + E ( En - (E . ) )  O . (  • ) 
H H 

=(EH)  E OH((/)). (7) 
H 

Consequently, any solution of  @ giving rise to a large 
origin peak in ~ will maximize Z(q~). 

In comparison with the three variables of the rota- 
tion function, the large number of phases increases 
the difficulty of  finding the correct maximum of Z(q~). 
As shown by Debaerdemaeker,  Tate & Woolfson 
(1985), Z(~b) can be maximized by means of the 
tangent formula of Karle & Hauptman (1956). In 
practice, however, refinement of initially random 
phases with this tangent formula tends to refine them 
to overconsistency, i.e. the ~(u ,  qb) function com- 

2. The 'coincidence' function ZR(~)  

The function Z R ( ~ )  measuring the coincidence of 
the Po function without the origin peak with the 
~(u ,  ~ )  function is given by 

ZR(qb) = E ( E . - ( E . ) ) G n ( O ) .  (8) 
H 

u 1 

t 1 
0 i °%o o~ 

0 u 1 
(a) 

0 u 

(b) 

Fig. 1. (a) Patterson-type function P0 (small circles) of a one- 
dimensional model structure with atoms at 0.00, 0.20, 0.50 and 
0.75, and Patterson-type function ~9(q)) (continuous line) calcu- 
lated with true phases (Emi n = 0.71). Both functions without zero 
Fourier term, [ (sin 0 )/;t ] max = 0.6/~,- ~. ( b ) Product function Pox 
~(q~). Notice the dominance of the origin peak over the rest. 

(a) 

0 
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0 u 1 

(b) 

Fig. 2. (a) Po function with removed origin peak (small circles) 
and ~(q~) function calculated with true phases (continuous line) 
for the same example as in Fig. 1. (b) Product function Po 
(without origin peak)x ~(q0). The disappearance of the origin 
peak gives greater significance to the remaining peaks compared 
with Fig. l(b). 
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After replacement of GH(~) by (2), ZR(~)  becomes 

~., (1--(EH)/ Eh) E E-hEh'Eh-h' 
h h" 

x cos ( ~-h + 9~' + ~h-h') + Z ( EL- (EH)) 
I 

× Z EhEi-h COS (~b_l + ~h + ~l-h) 
h 

and, after some manipulation, it takes the final form 

ZR(q~) = ~ E -h [~  Xh,h'Eh'Eh-h'COS(qO-h+qC~h'+qOh-h') 

+ E (El -- (EH)) Eh-i COS ( q0_ h + 6! + ch-I) / 
1 l 

(9) 
with 

Xh.h'= [(1--(EH)I E_h) + (1 - (En) /  Eh,) 

+ ( 1 -(En)/Eh-h')]/3 (10) 

and ! being the reflections not belonging to the basis 
set {K}. By use of the same procedure as Debaer- 
demaeker et al. (1985), the new phase estimates 
maximizing ZR(Crp) can be found if the condition is 
solved for the limit of ZR(~) ,  

(O/O~u)Zu(~)=O V h ~ K ,  (11) 

which leads to the tangent formula 

q0h = phase of {~ Xh,h'Eh'Eh-u' 

+ E  [ E l -  (EH)]Eh-, exp i~b, 1 , (12) 
I ) 

where the phases ~b, are periodically recalculated from 
G~(~). Besides the largest E values, (12) also requires 
the small E values since the corresponding Fourier 
coefficients E , - (EH)  are large negative quantities. 

Finally, it is interesting to see what happens when 
the same theory is applied to the Patterson function. 
Since the corresponding Fourier coefficients are the 
squared moduli of the structure factors, (8) becomes 

Z~(q~) = Y. (E2-(E~))GnGH(CI)), (13) 
H 

where (E 2) is the mean value of E~ averaged over 
all H. For the reflections belonging to {K}, Gh can 
be estimated using the relationship 

G h --= ShEh, (14) 

where Sh is a calculable scaling factor. For the remain- 
ing reflections, the G~ are derived from the available 
q~h estimates, 

with h" and l - h " e  K, so that (13) can be rewritten 

Table 1. Number of correct solutions (%) of the test 
structure MBH 2 

40 sets of random phases refined with tangent formula (12) under 
different conditions specified by Nlarge (=number of large E 
values) and by Nsmal I ( = n u m b e r  of small E values). The best result 
is obtained for Nlarge = 220 and Nsmal 1 = 200 with ( E H ) =  1.18. A 
solution is considered to be correct if ([Ach[)< 35 °. 

Nweak 

Nlarg e 140 160 180 200 220 240 
240 0.0 12.5 12.5 12.5 10.0 - -  

220 7.5 25.0 20.0 32.5 30.0 15.0 

200 0.0 5.0 17.5 7.5 7.5 - -  

180 0.0 0.0 0.0 0.0 - -  - -  

in the form 

Z ~ ( ~ )  = Z Sh(E~-(E2))EhGh(crp) 
h 

+ 2 Eh,,El_h,,I (16) 

It can be demonstrated* that Z ~ ( ~ )  can be maxim- 
ized with a tangent fomula similar to (12), i.e. 

q~h = phase of IY~ Xh.h'Eh'Eh-h' + E ( E 2 - (  E2))Eh_I 
/w I 

× 1~ Eh,,E,_h,, [ exp i~b,}, (17) 

where the principal differences are the presence of 
the factor ]~h" Eh"E~-h"l in the ! summation and the 
redefinition of Xh,h' according to the expression 

Xh,h '=  [S-h(E2h--(E2))+ Su,(E2,-(E2)) 

+ Sh-u'( E2-n' - ( E ~)) ]/3. (18) 

Although the derivation of (17) is quite simple, it 
requires further experimental confirmation, which is 
not provided in the present paper. 

3. Test calculations 

To test the tangent formula (12), two structures from 
the Sheldrick data bank (G/Sttingen) have been selec- 
ted: the structure with code name MBH2, of formula 
C I 5 H 2 4 0 3 ,  triclinic, space group P1, Z = 3 ,  cell 
volume= 1106 A3 (Poyser, Edwards, Anderson, 
Hursthouse, Walker, Sheldrick & Walley, 1986); and 
the triclinic modification of valinomycin (code 
name=TVAL),  of formula C54H9oN6018, triclinic, 
space group P1, Z =2  (Karle, 1975; Smith, Duax, 
Langs, DeTitta, Edmonds, Rohrer & Weeks, 1975). 

The results of the application of (12) to MBH2 are 
summarized in Table 1. It can be seen that the best 

* The mathematical derivation has been deposited with the Brit- 
ish Library Document Supply Centre as Supplementary Publica- 
tion No. SUP 55600 (3 pp.). Copies may be obtained through The 
Technical Editor, International Union of Crystallography, 5 Abbey 
Square, Chester CH1 2HU, England. 
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result is obtained for N~arge = 220 and Nsmal I = 200 
with 32.5% of the refined sets possessing mean phase 
errors less than 35°: 7.5, 10.0 and 15.0% in the ranges 
0-25, 25-30 and 30-35 ° , respectively. 

The TVAL structure was selected to show the capa- 
bility of the tangent formula (12) to refine random 
phases in the case of a relatively large structure (156 
nonhydrogen atoms in the unit cell). The best result 
was obtained for Nlarg e = 300 and Nsmal ! = 300 ( E H ) =  
1.24). From a total of 200 sets, 12 (6%) show a mean 
phase error between 30 and 35 ° . 

4. Concluding remarks 

The viability of solving crystal structures from the 
direct interpretation of the nonorigin Patterson peaks 
as a function of the phases has been demonstrated. 
This result, however, should not be surprising since 
these peaks contain all the information regarding the 
atomic arrangement in the structure and, in addition, 

the atomicity information contained in the removed 
Patterson origin peak has already been considered in 
the derivation of the Fourier coefficients GH(q0). 

This work was supported by the DGICYT (Project 
PB89-0036). 
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Abstract 

The construction algorithm of the first two papers of 
this series [Fogden & Hyde (1992). Acta Cryst. A48, 
442-451,575-591] is extended to a general treatment 
of triply periodic minimal surfaces (containing as a 
special case the 'regular'  class analysed previously). 
A detailed outline of the parametrization procedure 
for an arbitrary 'irregular' class surface is provided 
and verified via a systematic rederivation of the C(P) 
surface described by Neovius [Bestimmung Zweier 
Speciellen Periodische Minimalfliichen (1883), Hel- 
sinki: Frenckel]. The method is further employed in 
parametrizing various empirically generated surfaces. 

I. Introduction 

Paper I of this series (Fogden & Hyde, 1992a) outlines 
the mathematical foundation of this study, in extend- 
ing the local representation of a general minimal 
surface, due to Weierstrass, to a rigorous connection 
between infinite (triply) periodic minimal surfaces 

(IPMS) and the finite-sheeted Riemann surface of 
their algebraic complex Weierstrass functions. Topo- 
logical considerations impose simple conditions relat- 
ing the fundamental  global characteristic of the I PMS 
- the genus - to the two principal global features of 
the Riemann surface - the total branch point order 
and number of sheets. Considerations of differential 
geometry local to the degenerate points of the IPMS 
(the 'flat' points, at which the Gaussian curvature is 
zero) constrain the Riemann surface structure to be 
local to the corresponding branch points. The local 
and global aspects are then coupled by the symmetries 
of the IPMS - the plane lines of curvature, linear 
asymptotes and rotational invariances - which reduce 
to Weierstrass functional relations. In summary, the 
specifying properties of an IPMS are readily trans- 
lated into those of the Riemann surface, making the 
latter a natural and extremely useful means of describ- 
ing the former. 

The remainder of papers I and II of this series 
(Fogden & Hyde, 1992a, b) deals with a special subset 

0108-7673/93/030409-13506.00 © 1993 International Union of Crystallography 


