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Abstract It is not uncommon for protein crystals to crystallise with more than a single molecule per asymmetric unit. The possibility of multiple favourable inter molecular contacts often forms the structural basis for polymorphisms that can result in various pathological situations such as twinning, modulated crystals and pseudo translational or rotational symmetry. We present the background to certain common pathologies with examples from the literature.   
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1. Introduction

With the advent of automated methods in crystallography (Adams et al., 2002; Adams et al., 2004; Brunzelle et al., 2003; Lamzin & Perrakis, 2000; Lamzin et al., 2000; Snell et al., 2004), it is not impossible to solve a structure without a visual inspection of the diffraction images (Winter, 2007; Holton & Alber, 2004), interpretation of  the output of a molecular replacement program (Read, 2001; Navaza, 1994; Vagin & Teplyakov, 2000) or, in extreme cases, manually building a model or even looking at the electron density map (Emsley & Cowtan, 2004; Terwilliger, 2002b; Morris et al., 2004; Morris et al., 2003; Terwilliger, 2002a; Holton et al., 2000; Ioerger et al., 1999; McRee, 1999; Perrakis et al., 1999). Although automated methods often handle many routine structure solution scenarios, pitfalls due to certain pathologies are still outside the scope of most automated methods.

The pathologies dealt with in this manuscript are related to the breaking of symmetry elements or the interplay between non-crystallographic symmetry and crystallographic symmetry. Pathologies of this type are often seen in protein crystallography (e.g. Dauter et al., 2005), since a large number of proteins crystallise with more than a single copy in the asymmetric unit as well as in a different space groups.

In order to have a better understanding of the issues at hand, we review basic group theory. The relationships between groups are visualised in via space group graphs. We also provide a number of examples from the PDB (Berman et al., 2000; Bernstein et al., 1977) and literature.

2. Space groups, symmetry and broken symmetry

2.1. Background and notation

The standard reference for crystallographic space group symmetry is International Tables for Crystallography, Volume A (Hahn, 2002). In the following we will use ITVA to refer to this work.
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2. Multiplication of group elements is associative: 
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3. There is an element 
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 (german: Einheit) in the group that "doesn't do anything": 
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is known as the identity element or also unit element.

4. For each element 
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Of the 230 crystallographic space group types, only 65 are compatible with chiral compounds, such as proteins or nucleic acids. The elements 
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 of these 65 groups are restricted to:

1. Rotations (2, 3, 4 and 6-fold)

2. Screw rotations (21, 31, 32, 41, 42, 43, 61, 62, 63, 64 and 65 axes)

3. Lattice translations (unit translations and centring translations)

For example, the space group P21 according to ITVA contains the elements:

1. The identity operator : (x, y, z) 

2. A two fold screw axis (21) along y: (-x , y+½ , -z) 

3. Lattice translations: (x+n, y+m, z+o), where (n, m, o) are integers

The lattice translations are often not mentioned explicitly. However, in the context of pathologies caused by broken symmetry (see below), explicit consideration of the lattice translations is crucial.

ITVA Table 4.3.1 defines Hermann-Mauguin space group symbols for 530 conventional settings. In the context of group-subgroup analysis with respect to a given metric (unit cell parameters), other unusual settings arise frequently. To be able to represent these with concise symbols, we have introduced Universal Hermann-Mauguin Symbols, by borrowing an idea introduced in (Shmueli et al., 2001): a change-of-basis symbol is appended to the conventional Hermann-Mauguin symbol. To obtain short symbols, two notations are used. For example (compare with Fig. 4 below):

C 1 2 1 (x-y, x+y, z)

C 1 2 1 (1/2*a-1/2*b, 1/2*a+1/2*b, c)

These two symbols are equivalent, i.e. encode the same unconventional setting of space group No. 5. The change-of-basis matrix encoded with the x,y,z notation is the inverse-transpose of the matrix encoded with the a,b,c notation. Often, for a given change-of-basis, one notation is significantly shorter than the other. The shortest symbol is used when composing the universal Hermann-Mauguin symbol.

Note that both change-of-basis notations have precedence in ITVA. The x,y,z  notation is used to symbolise symmetry operations which act on coordinates. Similarly, the x,y,z  change-of-basis symbol encodes a matrix that transforms coordinates from the reference setting to the unconventional setting. The a,b,c notation appears in ITVA section 4.3, where it encodes basis-vector transformations. Our a,b,c notation is compatible with this convention. The a,b,c change-of-basis symbol encodes a matrix that transforms basis-vectors from the reference setting to the unconventional setting.

A comprehensive overview of transformation relationships is given in and around Table 2.E.1 of (Giacovazzo, 1992).

2.2. Relations between groups

A subgroup 
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 which has all the group properties as listed in paragraph 2.1. 

For instance, the symmetry elements of space group P222 are {(x,y,z), (-x,y,-z), (x,-y,-z), (-x,-y,z)}. Subgroups of P222 can be constructed by selecting only certain elements. The full list of subgroups of P222 and the set of 'remaining elements' for each subgroup with respect to P222 are given in Tab. 1.

Note that if the elements of P211 are combined with one of the ‘remaining’ elements (-x,y,-z) or (-x,-y,z), the other element is generated by group multiplication, leading to P222. A depiction of the relations between all subgroups of P222 is shown in Fig. 1. In this figure, nodes representing space groups are linked with arrows. The arrows between the space groups indicate that the multiplication of a single symmetry element into a group results in the other group. For example, the arrow in Fig. 1 from P1 to P211 indicates that a single symmetry element (in this case (x,-y,-z) ) combined with P1 results in the space group P211.

2.3. Broken symmetry

It is not uncommon that non-crystallographic symmetry is close to being crystallographic symmetry. The transition of the arrangement of symmetrically arranged molecules to approximately symmetrically arranged molecules can be seen as a case of “broken symmetry”. Breaking of crystallographic symmetry can occur upon ligand binding, due to the introduction of Seleno-methionine residues, halide or heavy metal soaking, or crystal growth under different crystallisation conditions (Dauter et al., 2001; Poulsen et al., 2001; Parsons, 2003).

The presence of broken symmetry can be a structural basis for twinning or pseudo rotational or pseudo translational symmetry. Group-subgroup relations and their graphical representation as outlined in section 2.2 are a useful tool for understanding broken symmetry and the resulting relations between the space groups of different crystal forms.

Constructing examples of broken symmetry is straightforward. For example, given the asymmetric unit of a protein in P222, generate a symmetry-equivalent copy using the operator (-x,y,-z) or (-x,-y,z). If small random perturbations are applied to this new copy (e.g. a small overall rotation or small random shifts), the resulting symmetry is P211, with P222 pseudo symmetry. The two protein molecules in the P211 asymmetric unit are related by a non-crystallographic symmetry (NCS) operator that is very similar to a perfect two-fold crystallographic rotation.

Note that in the previous example, crystallographic symmetry operators were transformed into an NCS operator by the application of a small perturbation of the coordinates. The ‘remaining operators’ in Tab. 1 can be seen as NCS operators that are approximately equal to the listed operators.

3. Common pathologies

A number of pathologies will be discussed based on the symmetry and group tools just described.

3.1. Rotational pseudo symmetry

Rotational pseudo symmetry (RPS) can arise if the point-group symmetry of the lattice is higher than the point-group symmetry of the crystal. RPS is generated by an NCS operator parallel to a symmetry operator of the lattice that is not also a symmetry operator of the crystal space group. A prime example of such a case can be found in PDB entry 1Q43 (Zagotta et al., 2003). The structure crystallises in space group I4, with two molecules per asymmetric unit (ASU). The root mean square distance (RMSD) between the two copies in the ASU is 0.27 Å. The NCS operator (in fractional coordinates) that relates one molecule to the other is:


[image: image24.wmf]÷

÷

÷

ø

ö

ç

ç

ç

è

æ

=

÷

÷

÷

ø

ö

ç

ç

ç

è

æ

-

+

+

-

-

-

-

-

+

=

31

.

0

50

.

0

50

.

0

000

.

1

003

.

0

002

.

0

003

.

0

056

.

0

998

.

0

003

.

0

998

.

0

056

.

0

T

R


The rotational part 
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of the NCS operator can be recognised as being almost equal to a two-fold axis in the xy-plane. If the idealized operator 
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 is multiplied into space group I4 we obtain space group I422 with an arbitrary origin shift along z, which is a polar axis in I4. 

The R-value between pseudo-symmetry related intensities as calculated from the coordinates is equal to 44%. For unrelated (independent) intensities, the R-value is expected to be equal to 50% (Lebedev et al., 2006). In this case it is clear that the correct symmetry is I4 rather than I422. However, there is a grey area where it may be possible to merge the data with reasonable statistics in the higher symmetry. While this has the advantage of reducing the number of model parameters, over-idealisation of the symmetry may lead to problems in structure solution and particularly refinement. Furthermore, information about biologically significant differences may be lost. In case of doubt the best approach is to process and refine in both the lower and the higher symmetry, and to compare the resulting R-free values and model quality indicators.

3.2. Translational pseudo symmetry and pseudo centring

Translational pseudo symmetry (TPS) is an NCS operator whose rotational part is close to a unit matrix. If a TPS operator, or a combination of TPS operators, is very similar to a group of lattice-centring operators, it can be denoted as pseudo centring. An example is PDB entry 1SCT (Royer et al., 1995) where an NCS operator 
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 mimics a C-centring operator. In this particular case, the true space group is P212121, but pseudo symmetric C2221. 

In reciprocal space, the presence of pseudo centring operators translates into a systematic modulation of the observed intensities. The subset of reflections that would be systematically absent given idealized centring operators will have systematically low intensities. If these intensities are sufficiently low, data processing programs may index and reduce the diffraction images in a unit cell that is too small. This situation is very similar to the case of higher rotational symmetry as discussed in the previous section. A smaller unit cell is also a higher symmetry leading to a reduction of the number of model parameters. The “grey area” considerations of the previous section apply also to TPS. In addition, the efficiency of likelihood-based approaches that rely on specific assumptions about the distribution of the observed amplitudes can be impeded by the presence of TPS (see Read et al. in this issue).

An interesting crystallographic pathology can arise when pseudo centring is present. An example is given by (Lebedev et al., 2007). In this case the space group is P21 with a pseudo translation (x+½, y, z). The approximate symmetry is equal to two P21 cells stacked side by side on the (b,c)-face of the unit cell. The resulting symmetry is described by the universal Hermann-Mauguin symbol P 1 21 1 (2a, b, c). A full list of symmetry operators in this setting is shown in Tab. 2. From this set of operators, a number of subgroups can be constructed. Operators not used in the construction of the subgroup, can be regarded as NCS operators. If operators A and B are designated as crystallographic symmetry, the space group is P21 and operators C and D are NCS operators. If however operators A and D are designated to be crystallographic, the space group is P21 with an origin shift of (¼,0,0) and B and C are NCS operators. Both choices produce initially reasonable R-values, but only one is correct and eventually leads to the best model. Further details of problems encountered due to this ambiguity are reported in Lebedev et al. (2007).

3.3. Twinning

Twinning is a phenomenon where multiple reciprocal lattices partially or fully overlap. Resulting recorded intensities are therefore equal to the sum of the intensities of the individual domains with different orientations. The presence of twinning in an X-ray data set reveals itself usually by intensity statistics deviating from theoretical distributions. However, the presence of pseudo rotational symmetry (especially when parallel to the twin law) or pseudo translational symmetry can offset the effects of twinning on the intensity statistics, making it more difficult to detect the twinning. Basic intensity statistics elucidating the problems of pseudo symmetry in combination with twinning are explained thoroughly by Lebedev et al. (2006).

The relative sizes of the twin domains building up the crystal are the twin fractions. The sum of the twin fractions is one. The situation where all twin fractions are equal is called perfect twinning. A twin with an arbitrary ratio of twin fractions is denoted as a partial twin.

3.3.1. Merohedral and pseudo merohedral twins

Merohederal or pseudo merohedral twinning is a form of twinning in which the lattice has a higher symmetry than the symmetry of the unit cell content. If this occurs, the arrangement of reciprocal lattice points will have a higher symmetry than the symmetry of the intensities associated with the reciprocal lattice points. The symmetry operators that belong to the point group of the reciprocal lattice, but not to the symmetry of the point group of the intensities, are potential twin laws. 

If the reciprocal lattice is perfectly invariant under a given twin law (exact merohedral twinning), the presence of twinning can be detected only by inspection of the intensity statistics or model-based techniques. However, if the reciprocal lattice is only approximately invariant under a given twin law (pseudo merohedral twinning), twin related intensities may be identified as individual reflections in the diffraction pattern. Examples of a number of (pseudo) merohedrally twinned structures are given in Tab. 3.

The presence of an NCS operator that is an approximate crystallographic operator provides a structural argument for the presence of twinning. Twin domain interfaces have molecular contacts that are very similar to interfaces seen in non-twinned domains, which allows or promotes the growth of twinned crystals in general. In a similar manner, twinning can be introduced by the breaking of symmetry due to a temperature dependent phase transition (Helliwell et al., 2006; Herbst-Irmer & Sheldrick, 1998; Parsons, 2003), or by other external influences such as inclusion of a ligand or heavy atom soaks. An example of such a phase transition is described by (Dauter et al., 2001). In that particular case however, the symmetry of the crystals before the halide soak was lower than after the soak, eliminating the possibility of twinning.

Note that when a crystal is perfectly twinned or almost perfectly twinned, the data will scale well in a space group that is incorrect. The use of an incorrect space group often impedes a successful structure solution procedure.

3.3.2. Reticular merohedral twinning

Reticular merohedral twinning can be understood as merohedral twinning on an assembly of unit cells, a so called sublattice (Rutherford, 2006)  In this type of twinning, only a certain part of the reciprocal lattices of the twin domains will overlap, resulting in a diffraction pattern that consists of intensity sums with contributions from a variable number of twin domains. A well-known example of twinning by reticular merohedry is the obverse-reverse twinning in rhombohedral space groups. An excellent introduction into twinning by reticular merohedry is given by (Parsons, 2003). Examples of diffraction patterns are found in (Dauter, 2003).

3.3.3. Order-disorder twins

Order-disorder twins (Dornberger-Schiff & Dunitz, 1965; Dornberger-Schiff & Grell-Niemann, 1961; Dornberger-Schiff, 1966, 1956) are a less well-classified type of twins, but have been observed for protein structures in a number of cases (Trame & McKay, 2001; Wang et al., 2005). An order-disorder twin can occur when a crystal lattice is build up of successive layers of molecules, while the crystal contacts between the layers allow the molecules to shift relative to each other. If in such a crystal one of the layers has a random perturbation in the plane of this layer of molecules. Only a subset of the crystal lattice is ordered. The presence of disordered layers of molecules in the lattice introduces a modulation on the intensities of specific reflections. A correction for this effect can be vital for structure solution (Wang et al., 2005) and result in lower R-values during refinement (Trame & McKay, 2001). As it is noted by Nespolo et al. (2004), order-disorder phenomena in combination with twinning may easily go unnoticed during structure solution and refinement. 

3.4. Common pitfalls

Misindexing. When the beam centre has not been defined accurately enough, auto indexing programs can return an indexing solution in which the (0,0,0) reflection (the direct beam) is, for instance, indexed as (0,0,1). Subsequent merging of the data will fail if the Miller indices are not corrected. Misindexing can be avoided by obtaining the position of the direct beam on the detector using powder methods or by using more robust autoindexing routines (Sauter et al., 2004). 

Incorrect unit cell. When more than a single crystal is present or when the diffraction images are noisy in general, it is possible that auto indexing proceduces a unit cell that is too large. In the integrated and merged data this issue can reveal itself as a prominent peak in a Patterson function. In contrast, if the structure under investigation has a strong pseudo translation, it can occur that the indexing solution corresponds to a unit cell that is too small. In such a case, reflections that are systematically weak due to the pseudo translation are ignored and the pseudo translation is treated as a lattice translation.

Incorrect space group. If an approximately correct unit cell has been obtained, the space group has to be determined based on the intensities. The presence of pseudo symmetry can make this choice difficult, but the choice can be made automatically by programs such as phenix.xtriage (Zwart et al., 2005), Xprep (Sheldrick, 2000), Pointless (Evans, 2006) or Labelit (Sauter et al., 2006). Assigning an incorrect space group can result in a number of difficulties. If the assigned space group is too low, structure solution and refinement is made artificially difficult because of the larger number of molecules in the asymmetric unit. Furthermore, differences between molecules can subsequently be over-interpreted resulting in incorrect biological conclusions.

If the data are twinned and as a result the assigned space group is too high, it may not be possible to solve the structure. An excellent example that illustrates this (and other) pitfalls is given by Lee et al. (2003), where the presence of pseudo translational symmetry and perfect twinning resulted in an incorrect choice of both the unit cell and space group. 

4. Examples

4.1. Interesting cases from the PDB

A number of datasets in the PDB show interesting pathologies, such as twinning and pseudo rotational and or pseudo translational symmetry. A few examples are highlighted here.

2BD1. This structure of phospholipase A2 (Sekar et al., 2006) was indexed in C2 with unit cell parameters (74.58, 48.69, 67.55, 90, 102.3, 90).  The Patterson function reveals a peak at (0, ½, 0) with a height approximately equal to that of the origin (99%). Correspondingly, the intensities of the reflections with Miller indices that would be equal to zero if the NCS operator was crystallographic, barely rise above the noise as judged from their associated standard deviations. The RMSD between the Cα atoms of the two molecules related by the translational NCS operator obtained from the Patterson function is very small, 0.08 Å. In comparison, the cross-validated estimate of the coordinate error is 0.19 Å, which strongly suggests that the unit cell is in fact too large.

2A8Y. The unit cell constants for this structure are (96.60, 96.56, 96.63, 91.57, 91.23, 91.52). The deposited space group is P1 (Zhang et al., 2006). Cursory analysis of the unit cell parameters suggests that the highest possible symmetry may be rhombohedral. An analysis of the merged intensities with phenix.xtriage reveals that the intensity symmetry corresponds to the space group C2, with unit cell parameters (135.2, 138.1, 96.6, 90, 92.2, 90). In this particular case, the authors did attempt to merge the data in various point groups (including C2), but the data only scaled well in space group P1 (Zhang et al., 2006). Given the pseudo symmetric nature of the lattice (pseudo rhombohedral), C2 can be embedded in the higher-symmetry lattice in three different ways (see Fig. 4), corresponding to the three orientations of the two fold axis in space group R32. The integration suite used to initially process the data only gave a single indexing choice for C2, which was unfortunately incorrect. Currently, the structure is being re-refined in the higher symmetry C2 space group (Ealick, private communication).

1UPP. The structure of a spinach rubisco complex (Karkehabadi et al., 2003) has associated unit cell parameters (155.9, 156.3, 199.8, 90, 90, 90) and space group C2221. As can be seen from the unit cell parameters, a is approximately equal to b resulting in the presence of the twin law (k,h,-l). Furthermore, the Patterson function indicates a translational NCS vector (½, 0, ½) at a height of 40% of the origin. The presence of pseudo translational symmetry can make the detection of twinning difficult, but the results of the L-test (Padilla & Yeates, 2003) are quite clear (Tab. 4).  Refinement of the twin fraction given the deposited structure indicates that the twin fraction is approximately 45%. Including twinning in the R-value calculations (while keeping the model fixed), reduces the R-value from 0.25 to 0.17.

4.2. Molecular replacement using twinned data

Using artificially twinned data, it can be demonstrated that the contrast of the rotation function decreases in proportion to the twin fraction (Fig. 4). A similar observation is made for the translation function (Fig. 5). However, from practical experience we know that molecular replacement based on twinned data is often successful if the quality of the search model is reasonable.

In the case of perfect twinning, a data reduction program may pick a space group that is too high (see section 3.3.1). In this situation it is unlikely that molecular replacement will produce a solution, as the ASU is typically too small to contain the true contents of the crystal. Working with the data re-processed in the lower symmetry may be successful, even though the data is perfectly twinned. 

4.3. Manual molecular replacement using group-sub group relations

It is not uncommon that a protein molecule crystallises in various space groups (polymorphs). In some cases, the polymorphs are related and one can use the structure of one polymorph to solve the other without the aid of automated molecular replacement software (Di Costanzo et al., 2003). An example structure solution utilising group-subgroup relations is presented here.

The crystals of 1EIX and 1JJK (Poulsen et al., 2001) have been grown under similar conditions, but 1EIX is a native protein structure, while 1JJK is a seleno-methionine derivative. The cell parameters are listed in Tab. 5. The ratio of the unit cell volumes is 2.12, suggesting the possibility of a relation between the two unit cells. Another piece of evidence suggesting a relation is found in the Patterson function of 1JJK: a large peak is located at (½, 0, ½), which can be interpreted as pseudo centring (translational NCS). If this NCS operator would be a crystallographic operator, the unit cell dimensions of 1JJK would be equal (apart from a permutation of the basis vectors) to the unit cell constants of 1EIX. It is thus clear that 1JJK is related to 1EIX via broken translational symmetry (as seen from the Patterson peak) and broken rotational/screw symmetry (P21 versus P212121).

A relation between the two unit cells was identified with the tool iotbx.explore_metric_symmetry (Zwart et al., 2006) and is depicted in Fig. 6. The procedure used to solve the structure of 1JJK with the model of 1EIK via group-subgroup relations is described in (Di Costanzo et al., 2003). First, the appropriate ASU is constructed by applying a two-fold screw axis to the ASU of 1EIX. Subsequently, a lattice translation along a is applied to these two molecules.  An appropriate change of basis to bring the model in the correct orientation and a subsequent origin shift generates a possible solution. In this particular case, a group theoretical analysis reveals that two origin shifts are possible (see section 3.2). Rigid body refinement of the two possible solutions while taking into account the presence of twinning resulted in a single, clear solution (Tab. 6).

5. Discussion and Conclusions

There are numerous special cases and pitfalls arising from the interplay of crystallographic and non-crystallographic symmetry in macromolecular crystals. Clearly this paper only touches the tip of the iceberg. Fortunately there are now a number of tools that make it possible to identify many of the most common problems.  In some situations it is possible to correct for the problem, in others use of the appropriate algorithms in subsequent structure solution and refinement can lead to accurate final models suitable for biological interpretation. Experience suggests that it is initially best to treat all experimental data with suspicion and apply all available tests to identify possible pathologies as soon as possible after data collection and processing. In an ideal world data would be stored in an unmerged form in space group P1 and certain decisions are made automatically as more information becomes available. In the case of (close to) perfect twinning, knowledge of the proper space group can for instance only be available when a partial model is build. A similar argument can be made for the detection and dealing with order-disorder twinning. Note that this scheme assumes that the correct unit cell has been found by the auto-indexing software. Incorporating decision making schemes that include changes in the primitive unit cell parameters will most likely require access to the raw data. 
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Figure 1 A graphical representation of all group-subgroup relations for P222 and it subgroups. The arrows connecting two space groups represent the addition of a single operator to the parent space groups and its result. 
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Figure 2 A space group graph showing all subgroups of space group P 1 21 1 (2a,b,c). Specifically, two distinct P21 subgroups are available with equal unit cell dimensions, related by an origin shift of ¼. See text and Table 2 for details. 
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Figure 3 A space group graph showing all subgroups of space group R32:R. Specifically, three distinct C2 subgroups are available, corresponding to three possible directions the two fold axes are oriented in R32.
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Figure 4 The value of the largest peak in the rotation of the program MOLREP for synthetically twinned data. The blue line shows the value for a model with 100% sequence identity, whereas the purple line indicates the results of the rotation function when the model has 27% sequence identity. In both runs, the search model compromised only one quarter of the total ASU content.
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Figure 5 The value of the contrast of the translation function of the program MOLREP for synthetically twinned data, given a correct orientation of the model.  The search model was identical to model used to compute the artificially twinned data. 
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Figure 6 The relations between projections of the unit cells of 1EIX and 1JJK. The basis vectors of the orthorhombic unit cell of 1EIX are shown in black. The blue and red basis vectors are two equivalent choices for a unit cell of 1JJK. The purple vectors indicate that 1JJK is approximately C-centred orthorhombic. 
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Table 1 Subgroups of P222. For each subgroup, the symmetry operators are specified, together with the operators that are element of P222, but not of the subgroup. Although P222 is not a subgroup of itself, its details are shown for completeness.   

	Space group 
	 Operators
	 Remaining operators

	P222
	(x,y,z), (-x,y,-z), (x,-y,-z), (-x,-y,z)
	None

	P211
	(x,y,z), (x,-y,-z)
	(-x,y,-z), (-x,-y,z)

	P121
	(x,y,z), (-x,y,-z)

	(x,-y,-z), (-x,-y,z)

	P112
	(x,y,z), (-x,-y,z)
	(-x,y,-z), (x,-y,-z)

	P1
	(x,y,z)
	 (-x,y,-z), (x,-y,-z), (-x,-y,z)


Table 2 The presence of a pseudo centring operator (x+½,y ,z) in P21 can lead to an interesting pathology.  If all operators are crystallographic operators, and (x+½,y ,z) is designated to be a lattice translation (LT), the a number of groups can be formed. See Fig. 2 and the main text for details.

	Name 
	 Operators
	Description

	A
	(x,y,z)
	E

	B
	(-x,y+½ ,-z)
	21 through (0,0,0)

	C
	(x+½, y,z)
	LT

	D
	(-x+½,y+½ ,-z)
	21 through (¼,0,0)


Table 3 Examples of (pseudo) merohedrally twinned structures. 

	PDBID 
	 Unit cell constants
	Space group
	Twin law
	Fraction
	Type

	1Q43
	95, 95, 125, 90, 90, 90
	I4
	(-k,-h,-l)
	8%
	M

	1EYX
	180, 180, 36, 90, 90, 120
	R3:H
	(h,-h-k,-l)
	45%
	M

	1UPP
	155.8, 156.2, 199.7, 90, 90, 90
	C 2 2 21
	(h,k,-l)
	45%
	PM

	1L2H
	53.9, 53.9, 77.4, 90, 90, 90
	P 43
	(-h,k,-l)
	37%
	M


Table 4 Intensity statistics of 1UPP. Only the L test indicates that the data might be twinned.

	Statistic
	Observed
	Theory (untwinned)
	Theory (perfect twin)
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Table 5 Unit cell parameters for structures 1EIX and 1JJK.

	Code
	Unit cell parameters
	Space group

	1EIX
	115, 149, 116, 90, 115, 90
	P21

	1JJK
	61, 96, 145, 90, 90, 90
	P212121


Table 6 Results of the manual molecular replacement and subsequent rigid body refinement

	Origin shift
	R value (start)
	R-value (rigid)
	R-value (twin)

	Choice 1
	0.54
	0.34
	0.30   (twin fraction: 0.43)

	Choice 2
	0.54
	0.30
	0.25   (twin fraction: 0.37)
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