[Index of services]
[New input]
Input space group symbol: C 4a 2c -1a
Convention: Hall symbol
Number of lattice translations: 2
Space group is centric.
Number of representative symmetry operations: 8
Total number of symmetry operations: 32
Parallelepiped containing an asymmetric unit:
cctbx Error: Brick is not available for the given space group representation.
List of symmetry operations:
Matrix
| Rotation-part type
| Axis direction
| Screw/glide component
| Origin shift
|
x,y,z
| 1 | - | - | -
|
-y+1/2,x,z
| 4^1 | [0,0,1] | 0,0,0 | 1/4,1/4,0
|
-x+1/2,-y+1/2,z
| 2 | [0,0,1] | 0,0,0 | 1/4,1/4,0
|
y,-x+1/2,z
| 4^-1 | [0,0,1] | 0,0,0 | 1/4,1/4,0
|
x,-y,-z+1/2
| 2 | [1,0,0] | 0,0,0 | 0,0,1/4
|
y+1/2,x,-z+1/2
| 2 | [1,1,0] | 1/4,1/4,0 | 1/4,0,1/4
|
-x+1/2,y+1/2,-z+1/2
| 2 | [0,1,0] | 0,1/2,0 | 1/4,0,1/4
|
-y,-x+1/2,-z+1/2
| 2 | [-1,1,0] | -1/4,1/4,0 | 1/4,0,1/4
|
-x+1/2,-y,-z
| -1 | - | - | 1/4,0,0
|
y,-x,-z
| -4^1 | [0,0,1] | 0,0,0 | 0,0,0
|
x,y-1/2,-z
| -2 | [0,0,1] | 0,-1/2,0 | 0,0,0
|
-y+1/2,x-1/2,-z
| -4^-1 | [0,0,1] | 0,0,0 | 1/2,0,0
|
-x+1/2,y,z-1/2
| -2 | [1,0,0] | 0,0,-1/2 | 1/4,0,0
|
-y,-x,z-1/2
| -2 | [1,1,0] | 0,0,-1/2 | 0,0,0
|
x,-y-1/2,z-1/2
| -2 | [0,1,0] | 0,0,-1/2 | 0,-1/4,0
|
y+1/2,x-1/2,z-1/2
| -2 | [-1,1,0] | 0,0,-1/2 | 1/2,0,0
|
x+1/2,y+1/2,z
| 1 | - | - | -
|
-y+1,x+1/2,z
| 4^1 | [0,0,1] | 0,0,0 | 1/4,3/4,0
|
-x+1,-y+1,z
| 2 | [0,0,1] | 0,0,0 | 1/2,1/2,0
|
y+1/2,-x+1,z
| 4^-1 | [0,0,1] | 0,0,0 | 3/4,1/4,0
|
x+1/2,-y+1/2,-z+1/2
| 2 | [1,0,0] | 1/2,0,0 | 0,1/4,1/4
|
y+1,x+1/2,-z+1/2
| 2 | [1,1,0] | 3/4,3/4,0 | 1/4,0,1/4
|
-x+1,y+1,-z+1/2
| 2 | [0,1,0] | 0,1,0 | 1/2,0,1/4
|
-y+1/2,-x+1,-z+1/2
| 2 | [-1,1,0] | -1/4,1/4,0 | 3/4,0,1/4
|
-x+1,-y+1/2,-z
| -1 | - | - | 1/2,1/4,0
|
y+1/2,-x+1/2,-z
| -4^1 | [0,0,1] | 0,0,0 | 1/2,0,0
|
x+1/2,y,-z
| -2 | [0,0,1] | 1/2,0,0 | 0,0,0
|
-y+1,x,-z
| -4^-1 | [0,0,1] | 0,0,0 | 1/2,1/2,0
|
-x+1,y+1/2,z-1/2
| -2 | [1,0,0] | 0,1/2,-1/2 | 1/2,0,0
|
-y+1/2,-x+1/2,z-1/2
| -2 | [1,1,0] | 0,0,-1/2 | 1/2,0,0
|
x+1/2,-y,z-1/2
| -2 | [0,1,0] | 1/2,0,-1/2 | 0,0,0
|
y+1,x,z-1/2
| -2 | [-1,1,0] | 1/2,1/2,-1/2 | 1/2,0,0
|
Space group number: 130
Conventional Hermann-Mauguin symbol: P 4/n c c :2
Universal Hermann-Mauguin symbol: P 4/n c c :2 (a+b+1/4,-a+b-1/4,c)
Hall symbol: -P 4a 2ac (1/2*x+1/2*y,-1/2*x+1/2*y+1/4,z)
Change-of-basis matrix: x-y+1/4,x+y-1/4,z
Inverse: 1/2*x+1/2*y,-1/2*x+1/2*y+1/4,z
List of Wyckoff positions:
Wyckoff letter
| Multiplicity
| Site symmetry point group type
| Representative special position operator
|
g | 32 | 1 | x,y,z
|
f | 16 | 2 | 0,y,1/4
|
e | 16 | 2 | 0,1/2,z
|
d | 16 | -1 | 0,1/4,0
|
c | 8 | 4 | 1/4,1/4,z
|
b | 8 | -4 | 0,1/2,0
|
a | 8 | 222 | 0,1/2,1/4
|
Harker planes:
Algebraic
| Normal vector
| A point in the plane
|
x-y+1/2,-x-y,0 | [0,0,1] | 1/2,0,0
|
0,2*y,2*z+1/2 | [1,0,0] | 0,0,1/2
|
x+y+1/2,-x-y,2*z+1/2 | [1,1,0] | 1/2,0,1/2
|
2*x+1/2,1/2,2*z+1/2 | [0,1,0] | 1/2,1/2,1/2
|
x+y,x+y+1/2,2*z+1/2 | [-1,1,0] | 0,1/2,1/2
|
Additional generators of Euclidean normalizer:
Number of structure-seminvariant vectors and moduli: 2
Vector Modulus
(1, 0, 0) 2
(0, 0, 1) 2
Grid factors implied by symmetries:
Space group: (2, 2, 2)
Structure-seminvariant vectors and moduli: (2, 1, 2)
Euclidean normalizer: (2, 2, 2)
All points of a grid over the unit cell are mapped
exactly onto other grid points only if the factors
shown above are factors of the grid.
[Index of services]
[New input]