[Index of services] [New input]
Input space group symbol: C 4ac 2a -1ac
Convention: Hall symbol

Number of lattice translations: 2
Space group is centric.
Number of representative symmetry operations: 8
Total number of symmetry operations: 32

Parallelepiped containing an asymmetric unit:
  cctbx Error: Brick is not available for the given space group representation.

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-y+1/2,x,z+1/2 4^1[0,0,1]0,0,1/21/4,1/4,0
-x+1/2,-y+1/2,z 2[0,0,1]0,0,01/4,1/4,0
y,-x+1/2,z+1/2 4^-1[0,0,1]0,0,1/21/4,1/4,0
x+1/2,-y,-z 2[1,0,0]1/2,0,00,0,0
y+1/2,x+1/2,-z+1/2 2[1,1,0]1/2,1/2,00,0,1/4
-x,y+1/2,-z 2[0,1,0]0,1/2,00,0,0
-y,-x,-z+1/2 2[-1,1,0]0,0,00,0,1/4
-x+1/2,-y,-z+1/2 -1--1/4,0,1/4
y,-x,-z -4^1[0,0,1]0,0,00,0,0
x,y-1/2,-z+1/2 -2[0,0,1]0,-1/2,00,0,1/4
-y+1/2,x-1/2,-z -4^-1[0,0,1]0,0,01/2,0,0
-x,y,z+1/2 -2[1,0,0]0,0,1/20,0,0
-y,-x-1/2,z -2[1,1,0]1/4,-1/4,0-1/4,0,0
x+1/2,-y-1/2,z+1/2 -2[0,1,0]1/2,0,1/20,-1/4,0
y+1/2,x,z -2[-1,1,0]1/4,1/4,01/4,0,0
x+1/2,y+1/2,z 1---
-y+1,x+1/2,z+1/2 4^1[0,0,1]0,0,1/21/4,3/4,0
-x+1,-y+1,z 2[0,0,1]0,0,01/2,1/2,0
y+1/2,-x+1,z+1/2 4^-1[0,0,1]0,0,1/23/4,1/4,0
x+1,-y+1/2,-z 2[1,0,0]1,0,00,1/4,0
y+1,x+1,-z+1/2 2[1,1,0]1,1,00,0,1/4
-x+1/2,y+1,-z 2[0,1,0]0,1,01/4,0,0
-y+1/2,-x+1/2,-z+1/2 2[-1,1,0]0,0,01/2,0,1/4
-x+1,-y+1/2,-z+1/2 -1--1/2,1/4,1/4
y+1/2,-x+1/2,-z -4^1[0,0,1]0,0,01/2,0,0
x+1/2,y,-z+1/2 -2[0,0,1]1/2,0,00,0,1/4
-y+1,x,-z -4^-1[0,0,1]0,0,01/2,1/2,0
-x+1/2,y+1/2,z+1/2 -2[1,0,0]0,1/2,1/21/4,0,0
-y+1/2,-x,z -2[1,1,0]1/4,-1/4,01/4,0,0
x+1,-y,z+1/2 -2[0,1,0]1,0,1/20,0,0
y+1,x+1/2,z -2[-1,1,0]3/4,3/4,01/4,0,0

Space group number: 133
Conventional Hermann-Mauguin symbol: P 42/n b c :2
Universal    Hermann-Mauguin symbol: P 42/n b c :2 (a+b+1/4,-a+b-1/4,c-1/4)
Hall symbol: -P 4ac 2b (1/2*x+1/2*y,-1/2*x+1/2*y+1/4,z+1/4)
Change-of-basis matrix: x-y+1/4,x+y-1/4,z-1/4
               Inverse: 1/2*x+1/2*y,-1/2*x+1/2*y+1/4,z+1/4

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
k321x,y,z
j162x,1/4,1/2
i162x,-x+1/2,3/4
h162x,-x+1/2,1/4
g1620,1/2,z
f1621/4,1/4,z
e16-10,1/4,1/4
d8-40,1/2,0
c82221/4,1/4,1/2
b82220,1/2,1/4
a82221/4,1/4,1/4

Harker planes:
Algebraic Normal vector A point in the plane
x-y+1/2,-x-y,1/2[0,0,1]1/2,0,1/2
2*x+1/2,2*y+1/2,0[0,0,1]1/2,1/2,0
1/2,2*y,2*z[1,0,0]1/2,0,0
x+y+1/2,-x-y+1/2,2*z+1/2[1,1,0]1/2,1/2,1/2
2*x,1/2,2*z[0,1,0]0,1/2,0
x+y,x+y,2*z+1/2[-1,1,0]0,0,1/2

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 2
    Vector    Modulus
    (1, 0, 0) 2
    (0, 0, 1) 2

Grid factors implied by symmetries:
  Space group: (2, 2, 2)
  Structure-seminvariant vectors and moduli: (2, 1, 2)
  Euclidean normalizer: (2, 2, 2)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]