[Index of services]
[New input]
Input space group symbol: F -4 -2
Convention: Hall symbol
Number of lattice translations: 4
Space group is acentric.
Number of representative symmetry operations: 8
Total number of symmetry operations: 32
Parallelepiped containing an asymmetric unit:
cctbx Error: Brick is not available for the given space group representation.
List of symmetry operations:
Matrix
| Rotation-part type
| Axis direction
| Screw/glide component
| Origin shift
|
x,y,z
| 1 | - | - | -
|
y,-x,-z
| -4^1 | [0,0,1] | 0,0,0 | 0,0,0
|
-x,-y,z
| 2 | [0,0,1] | 0,0,0 | 0,0,0
|
-y,x,-z
| -4^-1 | [0,0,1] | 0,0,0 | 0,0,0
|
-x,y,z
| -2 | [1,0,0] | 0,0,0 | 0,0,0
|
y,x,-z
| 2 | [1,1,0] | 0,0,0 | 0,0,0
|
x,-y,z
| -2 | [0,1,0] | 0,0,0 | 0,0,0
|
-y,-x,-z
| 2 | [-1,1,0] | 0,0,0 | 0,0,0
|
x,y+1/2,z+1/2
| 1 | - | - | -
|
y,-x+1/2,-z+1/2
| -4^1 | [0,0,1] | 0,0,0 | 1/4,1/4,1/4
|
-x,-y+1/2,z+1/2
| 2 | [0,0,1] | 0,0,1/2 | 0,1/4,0
|
-y,x+1/2,-z+1/2
| -4^-1 | [0,0,1] | 0,0,0 | -1/4,1/4,1/4
|
-x,y+1/2,z+1/2
| -2 | [1,0,0] | 0,1/2,1/2 | 0,0,0
|
y,x+1/2,-z+1/2
| 2 | [1,1,0] | 1/4,1/4,0 | -1/4,0,1/4
|
x,-y+1/2,z+1/2
| -2 | [0,1,0] | 0,0,1/2 | 0,1/4,0
|
-y,-x+1/2,-z+1/2
| 2 | [-1,1,0] | -1/4,1/4,0 | 1/4,0,1/4
|
x+1/2,y,z+1/2
| 1 | - | - | -
|
y+1/2,-x,-z+1/2
| -4^1 | [0,0,1] | 0,0,0 | 1/4,-1/4,1/4
|
-x+1/2,-y,z+1/2
| 2 | [0,0,1] | 0,0,1/2 | 1/4,0,0
|
-y+1/2,x,-z+1/2
| -4^-1 | [0,0,1] | 0,0,0 | 1/4,1/4,1/4
|
-x+1/2,y,z+1/2
| -2 | [1,0,0] | 0,0,1/2 | 1/4,0,0
|
y+1/2,x,-z+1/2
| 2 | [1,1,0] | 1/4,1/4,0 | 1/4,0,1/4
|
x+1/2,-y,z+1/2
| -2 | [0,1,0] | 1/2,0,1/2 | 0,0,0
|
-y+1/2,-x,-z+1/2
| 2 | [-1,1,0] | 1/4,-1/4,0 | 1/4,0,1/4
|
x+1/2,y+1/2,z
| 1 | - | - | -
|
y+1/2,-x+1/2,-z
| -4^1 | [0,0,1] | 0,0,0 | 1/2,0,0
|
-x+1/2,-y+1/2,z
| 2 | [0,0,1] | 0,0,0 | 1/4,1/4,0
|
-y+1/2,x+1/2,-z
| -4^-1 | [0,0,1] | 0,0,0 | 0,1/2,0
|
-x+1/2,y+1/2,z
| -2 | [1,0,0] | 0,1/2,0 | 1/4,0,0
|
y+1/2,x+1/2,-z
| 2 | [1,1,0] | 1/2,1/2,0 | 0,0,0
|
x+1/2,-y+1/2,z
| -2 | [0,1,0] | 1/2,0,0 | 0,1/4,0
|
-y+1/2,-x+1/2,-z
| 2 | [-1,1,0] | 0,0,0 | 1/2,0,0
|
Space group number: 121
Conventional Hermann-Mauguin symbol: I -4 2 m
Universal Hermann-Mauguin symbol: I -4 2 m (a+b,-a+b,c)
Hall symbol: I -4 2 (1/2*x+1/2*y,-1/2*x+1/2*y,z)
Change-of-basis matrix: x-y,x+y,z
Inverse: 1/2*x+1/2*y,-1/2*x+1/2*y,z
List of Wyckoff positions:
Wyckoff letter
| Multiplicity
| Site symmetry point group type
| Representative special position operator
|
j | 32 | 1 | x,y,z
|
i | 16 | m | x,0,z
|
h | 16 | 2 | 1/4,1/4,z
|
g | 16 | 2 | x,-x,1/2
|
f | 16 | 2 | x,-x,0
|
e | 8 | mm2 | 0,0,z
|
d | 8 | -4 | 1/4,1/4,1/4
|
c | 8 | 222 | 1/4,1/4,0
|
b | 4 | -42m | 0,0,1/2
|
a | 4 | -42m | 0,0,0
|
Harker planes:
Algebraic
| Normal vector
| A point in the plane
|
2*x,2*y,0 | [0,0,1] | 0,0,0
|
x+y,-x-y,2*z | [1,1,0] | 0,0,0
|
x+y,x+y,2*z | [-1,1,0] | 0,0,0
|
Additional generators of Euclidean normalizer:
Number of structure-seminvariant vectors and moduli: 1
Vector Modulus
(1, 0, 0) 2
Inversion through a centre at: 0,0,0
Grid factors implied by symmetries:
Space group: (2, 2, 2)
Structure-seminvariant vectors and moduli: (2, 1, 1)
Euclidean normalizer: (2, 2, 2)
All points of a grid over the unit cell are mapped
exactly onto other grid points only if the factors
shown above are factors of the grid.
[Index of services]
[New input]