[Index of services]
[New input]
Input space group symbol: F 4d -2d
Convention: Hall symbol
Number of lattice translations: 4
Space group is acentric.
Number of representative symmetry operations: 8
Total number of symmetry operations: 32
Parallelepiped containing an asymmetric unit:
cctbx Error: Brick is not available for the given space group representation.
List of symmetry operations:
Matrix
| Rotation-part type
| Axis direction
| Screw/glide component
| Origin shift
|
x,y,z
| 1 | - | - | -
|
-y+1/4,x+1/4,z+1/4
| 4^1 | [0,0,1] | 0,0,1/4 | 0,1/4,0
|
-x,-y+1/2,z+1/2
| 2 | [0,0,1] | 0,0,1/2 | 0,1/4,0
|
y+3/4,-x+1/4,z+3/4
| 4^-1 | [0,0,1] | 0,0,3/4 | 1/2,-1/4,0
|
-x+1/4,y+1/4,z+1/4
| -2 | [1,0,0] | 0,1/4,1/4 | 1/8,0,0
|
-y,-x+1/2,z+1/2
| -2 | [1,1,0] | -1/4,1/4,1/2 | 1/4,0,0
|
x+3/4,-y+1/4,z+3/4
| -2 | [0,1,0] | 3/4,0,3/4 | 0,1/8,0
|
y,x,z
| -2 | [-1,1,0] | 0,0,0 | 0,0,0
|
x,y+1/2,z+1/2
| 1 | - | - | -
|
-y+1/4,x+3/4,z+3/4
| 4^1 | [0,0,1] | 0,0,3/4 | -1/4,1/2,0
|
-x,-y+1,z+1
| 2 | [0,0,1] | 0,0,1 | 0,1/2,0
|
y+3/4,-x+3/4,z+5/4
| 4^-1 | [0,0,1] | 0,0,5/4 | 3/4,0,0
|
-x+1/4,y+3/4,z+3/4
| -2 | [1,0,0] | 0,3/4,3/4 | 1/8,0,0
|
-y,-x+1,z+1
| -2 | [1,1,0] | -1/2,1/2,1 | 1/2,0,0
|
x+3/4,-y+3/4,z+5/4
| -2 | [0,1,0] | 3/4,0,5/4 | 0,3/8,0
|
y,x+1/2,z+1/2
| -2 | [-1,1,0] | 1/4,1/4,1/2 | -1/4,0,0
|
x+1/2,y,z+1/2
| 1 | - | - | -
|
-y+3/4,x+1/4,z+3/4
| 4^1 | [0,0,1] | 0,0,3/4 | 1/4,1/2,0
|
-x+1/2,-y+1/2,z+1
| 2 | [0,0,1] | 0,0,1 | 1/4,1/4,0
|
y+5/4,-x+1/4,z+5/4
| 4^-1 | [0,0,1] | 0,0,5/4 | 3/4,-1/2,0
|
-x+3/4,y+1/4,z+3/4
| -2 | [1,0,0] | 0,1/4,3/4 | 3/8,0,0
|
-y+1/2,-x+1/2,z+1
| -2 | [1,1,0] | 0,0,1 | 1/2,0,0
|
x+5/4,-y+1/4,z+5/4
| -2 | [0,1,0] | 5/4,0,5/4 | 0,1/8,0
|
y+1/2,x,z+1/2
| -2 | [-1,1,0] | 1/4,1/4,1/2 | 1/4,0,0
|
x+1/2,y+1/2,z
| 1 | - | - | -
|
-y+3/4,x+3/4,z+1/4
| 4^1 | [0,0,1] | 0,0,1/4 | 0,3/4,0
|
-x+1/2,-y+1,z+1/2
| 2 | [0,0,1] | 0,0,1/2 | 1/4,1/2,0
|
y+5/4,-x+3/4,z+3/4
| 4^-1 | [0,0,1] | 0,0,3/4 | 1,-1/4,0
|
-x+3/4,y+3/4,z+1/4
| -2 | [1,0,0] | 0,3/4,1/4 | 3/8,0,0
|
-y+1/2,-x+1,z+1/2
| -2 | [1,1,0] | -1/4,1/4,1/2 | 3/4,0,0
|
x+5/4,-y+3/4,z+3/4
| -2 | [0,1,0] | 5/4,0,3/4 | 0,3/8,0
|
y+1/2,x+1/2,z
| -2 | [-1,1,0] | 1/2,1/2,0 | 0,0,0
|
Space group number: 109
Conventional Hermann-Mauguin symbol: I 41 m d
Universal Hermann-Mauguin symbol: I 41 m d (a+b,-a+b,c)
Hall symbol: I 4bw -2 (1/2*x+1/2*y,-1/2*x+1/2*y,z)
Change-of-basis matrix: x-y,x+y,z
Inverse: 1/2*x+1/2*y,-1/2*x+1/2*y,z
List of Wyckoff positions:
Wyckoff letter
| Multiplicity
| Site symmetry point group type
| Representative special position operator
|
c | 32 | 1 | x,y,z
|
b | 16 | m | x,x,z
|
a | 8 | mm2 | 0,0,z
|
Harker planes:
Algebraic
| Normal vector
| A point in the plane
|
x-y+1/4,-x-y+1/4,1/4 | [0,0,1] | 1/4,1/4,1/4
|
2*x,2*y+1/2,1/2 | [0,0,1] | 0,1/2,1/2
|
Additional generators of Euclidean normalizer:
Number of structure-seminvariant vectors and moduli: 1
Vector Modulus
(0, 0, 1) 0
Inversion through a centre at: 1/8,-1/8,0
Grid factors implied by symmetries:
Space group: (4, 4, 4)
Structure-seminvariant vectors and moduli: (1, 1, 1)
Euclidean normalizer: (4, 4, 4)
All points of a grid over the unit cell are mapped
exactly onto other grid points only if the factors
shown above are factors of the grid.
[Index of services]
[New input]