[Index of services] [New input]
Input space group symbol: F 4d 2 -1d
Convention: Hall symbol

Number of lattice translations: 4
Space group is centric.
Number of representative symmetry operations: 8
Total number of symmetry operations: 64

Parallelepiped containing an asymmetric unit:
  cctbx Error: Brick is not available for the given space group representation.

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-y+1/4,x+1/4,z+1/4 4^1[0,0,1]0,0,1/40,1/4,0
-x,-y+1/2,z+1/2 2[0,0,1]0,0,1/20,1/4,0
y+3/4,-x+1/4,z+3/4 4^-1[0,0,1]0,0,3/41/2,-1/4,0
x,-y,-z 2[1,0,0]0,0,00,0,0
y+1/4,x+1/4,-z+1/4 2[1,1,0]1/4,1/4,00,0,1/8
-x,y+1/2,-z+1/2 2[0,1,0]0,1/2,00,0,1/4
-y+3/4,-x+1/4,-z+3/4 2[-1,1,0]1/4,-1/4,01/2,0,3/8
-x+1/4,-y+1/4,-z+1/4 -1--1/8,1/8,1/8
y,-x,-z -4^1[0,0,1]0,0,00,0,0
x+1/4,y-1/4,-z-1/4 -2[0,0,1]1/4,-1/4,00,0,-1/8
-y-1/2,x,-z-1/2 -4^-1[0,0,1]0,0,0-1/4,-1/4,-1/4
-x+1/4,y+1/4,z+1/4 -2[1,0,0]0,1/4,1/41/8,0,0
-y,-x,z -2[1,1,0]0,0,00,0,0
x+1/4,-y-1/4,z-1/4 -2[0,1,0]1/4,0,-1/40,-1/8,0
y-1/2,x,z-1/2 -2[-1,1,0]-1/4,-1/4,-1/2-1/4,0,0
x,y+1/2,z+1/2 1---
-y+1/4,x+3/4,z+3/4 4^1[0,0,1]0,0,3/4-1/4,1/2,0
-x,-y+1,z+1 2[0,0,1]0,0,10,1/2,0
y+3/4,-x+3/4,z+5/4 4^-1[0,0,1]0,0,5/43/4,0,0
x,-y+1/2,-z+1/2 2[1,0,0]0,0,00,1/4,1/4
y+1/4,x+3/4,-z+3/4 2[1,1,0]1/2,1/2,0-1/4,0,3/8
-x,y+1,-z+1 2[0,1,0]0,1,00,0,1/2
-y+3/4,-x+3/4,-z+5/4 2[-1,1,0]0,0,03/4,0,5/8
-x+1/4,-y+3/4,-z+3/4 -1--1/8,3/8,3/8
y,-x+1/2,-z+1/2 -4^1[0,0,1]0,0,01/4,1/4,1/4
x+1/4,y+1/4,-z+1/4 -2[0,0,1]1/4,1/4,00,0,1/8
-y-1/2,x+1/2,-z -4^-1[0,0,1]0,0,0-1/2,0,0
-x+1/4,y+3/4,z+3/4 -2[1,0,0]0,3/4,3/41/8,0,0
-y,-x+1/2,z+1/2 -2[1,1,0]-1/4,1/4,1/21/4,0,0
x+1/4,-y+1/4,z+1/4 -2[0,1,0]1/4,0,1/40,1/8,0
y-1/2,x+1/2,z -2[-1,1,0]0,0,0-1/2,0,0
x+1/2,y,z+1/2 1---
-y+3/4,x+1/4,z+3/4 4^1[0,0,1]0,0,3/41/4,1/2,0
-x+1/2,-y+1/2,z+1 2[0,0,1]0,0,11/4,1/4,0
y+5/4,-x+1/4,z+5/4 4^-1[0,0,1]0,0,5/43/4,-1/2,0
x+1/2,-y,-z+1/2 2[1,0,0]1/2,0,00,0,1/4
y+3/4,x+1/4,-z+3/4 2[1,1,0]1/2,1/2,01/4,0,3/8
-x+1/2,y+1/2,-z+1 2[0,1,0]0,1/2,01/4,0,1/2
-y+5/4,-x+1/4,-z+5/4 2[-1,1,0]1/2,-1/2,03/4,0,5/8
-x+3/4,-y+1/4,-z+3/4 -1--3/8,1/8,3/8
y+1/2,-x,-z+1/2 -4^1[0,0,1]0,0,01/4,-1/4,1/4
x+3/4,y-1/4,-z+1/4 -2[0,0,1]3/4,-1/4,00,0,1/8
-y,x,-z -4^-1[0,0,1]0,0,00,0,0
-x+3/4,y+1/4,z+3/4 -2[1,0,0]0,1/4,3/43/8,0,0
-y+1/2,-x,z+1/2 -2[1,1,0]1/4,-1/4,1/21/4,0,0
x+3/4,-y-1/4,z+1/4 -2[0,1,0]3/4,0,1/40,-1/8,0
y,x,z -2[-1,1,0]0,0,00,0,0
x+1/2,y+1/2,z 1---
-y+3/4,x+3/4,z+1/4 4^1[0,0,1]0,0,1/40,3/4,0
-x+1/2,-y+1,z+1/2 2[0,0,1]0,0,1/21/4,1/2,0
y+5/4,-x+3/4,z+3/4 4^-1[0,0,1]0,0,3/41,-1/4,0
x+1/2,-y+1/2,-z 2[1,0,0]1/2,0,00,1/4,0
y+3/4,x+3/4,-z+1/4 2[1,1,0]3/4,3/4,00,0,1/8
-x+1/2,y+1,-z+1/2 2[0,1,0]0,1,01/4,0,1/4
-y+5/4,-x+3/4,-z+3/4 2[-1,1,0]1/4,-1/4,01,0,3/8
-x+3/4,-y+3/4,-z+1/4 -1--3/8,3/8,1/8
y+1/2,-x+1/2,-z -4^1[0,0,1]0,0,01/2,0,0
x+3/4,y+1/4,-z-1/4 -2[0,0,1]3/4,1/4,00,0,-1/8
-y,x+1/2,-z-1/2 -4^-1[0,0,1]0,0,0-1/4,1/4,-1/4
-x+3/4,y+3/4,z+1/4 -2[1,0,0]0,3/4,1/43/8,0,0
-y+1/2,-x+1/2,z -2[1,1,0]0,0,01/2,0,0
x+3/4,-y+1/4,z-1/4 -2[0,1,0]3/4,0,-1/40,1/8,0
y,x+1/2,z-1/2 -2[-1,1,0]1/4,1/4,-1/2-1/4,0,0

Space group number: 141
Conventional Hermann-Mauguin symbol: I 41/a m d :2
Universal    Hermann-Mauguin symbol: I 41/a m d :2 (a-b,a+b-1/4,c+1/8)
Hall symbol: -I 4bd 2 (1/2*x-1/2*y-1/8,1/2*x+1/2*y+1/8,z-1/8)
Change-of-basis matrix: x+y,-x+y-1/4,z+1/8
               Inverse: 1/2*x-1/2*y-1/8,1/2*x+1/2*y+1/8,z-1/8

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
i641x,y,z
h32mx,-x,z
g322-1/4,y,-1/4
f322x,x+1/4,-1/8
e16mm2-1/4,1/4,z
d162/m-1/8,1/8,3/8
c162/m-1/8,1/8,-1/8
b8-42m-1/4,1/4,1/4
a8-42m0,0,0

Harker planes:
Algebraic Normal vector A point in the plane
x-y+1/4,-x-y+1/4,1/4[0,0,1]1/4,1/4,1/4
2*x,2*y+1/2,1/2[0,0,1]0,1/2,1/2
0,2*y,2*z[1,0,0]0,0,0
x+y+1/4,-x-y+1/4,2*z+1/4[1,1,0]1/4,1/4,1/4
2*x,1/2,2*z+1/2[0,1,0]0,1/2,1/2
x+y+3/4,x+y+1/4,2*z+3/4[-1,1,0]3/4,1/4,3/4

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 1
    Vector    Modulus
    (1, 0, 0) 2

Grid factors implied by symmetries:
  Space group: (4, 4, 4)
  Structure-seminvariant vectors and moduli: (2, 1, 1)
  Euclidean normalizer: (4, 4, 4)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]