[Index of services] [New input]
Input space group symbol: H 64 2 (0 0 4)
Convention: Hall symbol

Number of lattice translations: 3
Space group is acentric.
Space group is chiral.
Space group is enantiomorphic.
Number of representative symmetry operations: 12
Total number of symmetry operations: 36

Parallelepiped containing an asymmetric unit:
  cctbx Error: Brick is not available for the given space group representation.

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
x-y,x,z+2/3 6^1[0,0,1]0,0,2/30,0,0
-y,x-y,z+1/3 3^1[0,0,1]0,0,1/30,0,0
-x,-y,z 2[0,0,1]0,0,00,0,0
-x+y,-x,z+2/3 3^-1[0,0,1]0,0,2/30,0,0
y,-x+y,z+1/3 6^-1[0,0,1]0,0,1/30,0,0
-y,-x,-z+2/3 2[-1,1,0]0,0,00,0,1/3
x-y,-y,-z+1/3 2[1,0,0]0,0,00,0,1/6
x,x-y,-z 2[2,1,0]0,0,00,0,0
y,x,-z+2/3 2[1,1,0]0,0,00,0,1/3
-x+y,y,-z+1/3 2[1,2,0]0,0,00,0,1/6
-x,-x+y,-z 2[0,1,0]0,0,00,0,0
x+2/3,y+1/3,z 1---
x-y+2/3,x+1/3,z+2/3 6^1[0,0,1]0,0,2/31/3,2/3,0
-y+2/3,x-y+1/3,z+1/3 3^1[0,0,1]0,0,1/31/3,1/3,0
-x+2/3,-y+1/3,z 2[0,0,1]0,0,01/3,1/6,0
-x+y+2/3,-x+1/3,z+2/3 3^-1[0,0,1]0,0,2/31/3,0,0
y+2/3,-x+y+1/3,z+1/3 6^-1[0,0,1]0,0,1/31/3,-1/3,0
-y+2/3,-x+1/3,-z+2/3 2[-1,1,0]1/6,-1/6,01/2,0,1/3
x-y+2/3,-y+1/3,-z+1/3 2[1,0,0]1/2,0,00,1/6,1/6
x+2/3,x-y+1/3,-z 2[2,1,0]2/3,1/3,00,0,0
y+2/3,x+1/3,-z+2/3 2[1,1,0]1/2,1/2,01/6,0,1/3
-x+y+2/3,y+1/3,-z+1/3 2[1,2,0]1/6,1/3,01/4,0,1/6
-x+2/3,-x+y+1/3,-z 2[0,1,0]0,0,01/3,0,0
x+1/3,y+2/3,z 1---
x-y+1/3,x+2/3,z+2/3 6^1[0,0,1]0,0,2/3-1/3,1/3,0
-y+1/3,x-y+2/3,z+1/3 3^1[0,0,1]0,0,1/30,1/3,0
-x+1/3,-y+2/3,z 2[0,0,1]0,0,01/6,1/3,0
-x+y+1/3,-x+2/3,z+2/3 3^-1[0,0,1]0,0,2/31/3,1/3,0
y+1/3,-x+y+2/3,z+1/3 6^-1[0,0,1]0,0,1/32/3,1/3,0
-y+1/3,-x+2/3,-z+2/3 2[-1,1,0]-1/6,1/6,01/2,0,1/3
x-y+1/3,-y+2/3,-z+1/3 2[1,0,0]0,0,00,1/3,1/6
x+1/3,x-y+2/3,-z 2[2,1,0]1/3,1/6,0-1/2,0,0
y+1/3,x+2/3,-z+2/3 2[1,1,0]1/2,1/2,0-1/6,0,1/3
-x+y+1/3,y+2/3,-z+1/3 2[1,2,0]1/3,2/3,00,0,1/6
-x+1/3,-x+y+2/3,-z 2[0,1,0]0,1/2,01/6,0,0

Space group number: 181
Conventional Hermann-Mauguin symbol: P 64 2 2
Universal    Hermann-Mauguin symbol: P 64 2 2 (a-b,a+2*b,c)
Hall symbol:  P 64 2 (1/3*x+1/3*y,-1/3*x+2/3*y,z)
Change-of-basis matrix: x+y,-x+2*y,z
               Inverse: 2/3*x-1/3*y,1/3*x+1/3*y,z

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
k361x,y,z
j1820,y,1/2
i1820,y,0
h182x,1/2*x,1/2
g182x,1/2*x,0
f1821/3,1/6,z
e1820,0,z
d92221/3,1/6,1/2
c92221/3,1/6,0
b92220,0,1/2
a92220,0,0

Harker planes:
Algebraic Normal vector A point in the plane
-y,-x-y,2/3[0,0,1]0,0,2/3
x-y,-x-2*y,1/3[0,0,1]0,0,1/3
2*x,2*y,0[0,0,1]0,0,0
x+y,x+y,2*z+2/3[-1,1,0]0,0,2/3
y,2*y,2*z+1/3[1,0,0]0,0,1/3
0,x-2*y,2*z[2,1,0]0,0,0
x+y,-x-y,2*z+2/3[1,1,0]0,0,2/3
2*x+y,0,2*z+1/3[1,2,0]0,0,1/3
2*x,x,2*z[0,1,0]0,0,0

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 1
    Vector    Modulus
    (0, 0, 1) 2

Grid factors implied by symmetries:
  Space group: (3, 3, 3)
  Structure-seminvariant vectors and moduli: (1, 1, 2)
  Euclidean normalizer: (3, 3, 6)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]