[Index of services] [New input]
Input space group symbol: -C 4 2a
Convention: Hall symbol

Number of lattice translations: 2
Space group is centric.
Number of representative symmetry operations: 8
Total number of symmetry operations: 32

Parallelepiped containing an asymmetric unit:
  cctbx Error: Brick is not available for the given space group representation.

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-y,x,z 4^1[0,0,1]0,0,00,0,0
-x,-y,z 2[0,0,1]0,0,00,0,0
y,-x,z 4^-1[0,0,1]0,0,00,0,0
x+1/2,-y,-z 2[1,0,0]1/2,0,00,0,0
y,x+1/2,-z 2[1,1,0]1/4,1/4,0-1/4,0,0
-x+1/2,y,-z 2[0,1,0]0,0,01/4,0,0
-y,-x+1/2,-z 2[-1,1,0]-1/4,1/4,01/4,0,0
-x,-y,-z -1--0,0,0
y,-x,-z -4^1[0,0,1]0,0,00,0,0
x,y,-z -2[0,0,1]0,0,00,0,0
-y,x,-z -4^-1[0,0,1]0,0,00,0,0
-x-1/2,y,z -2[1,0,0]0,0,0-1/4,0,0
-y,-x-1/2,z -2[1,1,0]1/4,-1/4,0-1/4,0,0
x-1/2,-y,z -2[0,1,0]-1/2,0,00,0,0
y,x-1/2,z -2[-1,1,0]-1/4,-1/4,01/4,0,0
x+1/2,y+1/2,z 1---
-y+1/2,x+1/2,z 4^1[0,0,1]0,0,00,1/2,0
-x+1/2,-y+1/2,z 2[0,0,1]0,0,01/4,1/4,0
y+1/2,-x+1/2,z 4^-1[0,0,1]0,0,01/2,0,0
x+1,-y+1/2,-z 2[1,0,0]1,0,00,1/4,0
y+1/2,x+1,-z 2[1,1,0]3/4,3/4,0-1/4,0,0
-x+1,y+1/2,-z 2[0,1,0]0,1/2,01/2,0,0
-y+1/2,-x+1,-z 2[-1,1,0]-1/4,1/4,03/4,0,0
-x+1/2,-y+1/2,-z -1--1/4,1/4,0
y+1/2,-x+1/2,-z -4^1[0,0,1]0,0,01/2,0,0
x+1/2,y+1/2,-z -2[0,0,1]1/2,1/2,00,0,0
-y+1/2,x+1/2,-z -4^-1[0,0,1]0,0,00,1/2,0
-x,y+1/2,z -2[1,0,0]0,1/2,00,0,0
-y+1/2,-x,z -2[1,1,0]1/4,-1/4,01/4,0,0
x,-y+1/2,z -2[0,1,0]0,0,00,1/4,0
y+1/2,x,z -2[-1,1,0]1/4,1/4,01/4,0,0

Space group number: 127
Conventional Hermann-Mauguin symbol: P 4/m b m
Universal    Hermann-Mauguin symbol: P 4/m b m (a+b,-a+b,c)
Hall symbol: -P 4 2ab (1/2*x+1/2*y,-1/2*x+1/2*y,z)
Change-of-basis matrix: x-y,x+y,z
               Inverse: 1/2*x+1/2*y,-1/2*x+1/2*y,z

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
l321x,y,z
k16mx,1/4,z
j16mx,y,1/2
i16mx,y,0
h8mm2x,1/4,1/2
g8mm2x,1/4,0
f8mm21/4,1/4,z
e840,0,z
d4mmm1/4,1/4,0
c4mmm1/4,1/4,1/2
b44/m0,0,1/2
a44/m0,0,0

Harker planes:
Algebraic Normal vector A point in the plane
x-y,-x-y,0[0,0,1]0,0,0
1/2,2*y,2*z[1,0,0]1/2,0,0
x+y,-x-y+1/2,2*z[1,1,0]0,1/2,0
2*x+1/2,0,2*z[0,1,0]1/2,0,0
x+y,x+y+1/2,2*z[-1,1,0]0,1/2,0

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 2
    Vector    Modulus
    (1, 0, 0) 2
    (0, 0, 1) 2

Grid factors implied by symmetries:
  Space group: (2, 2, 1)
  Structure-seminvariant vectors and moduli: (2, 1, 2)
  Euclidean normalizer: (2, 2, 2)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]