[Index of services] [New input]
Input space group symbol: -C 4 2ac
Convention: Hall symbol

Number of lattice translations: 2
Space group is centric.
Number of representative symmetry operations: 8
Total number of symmetry operations: 32

Parallelepiped containing an asymmetric unit:
  cctbx Error: Brick is not available for the given space group representation.

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-y,x,z 4^1[0,0,1]0,0,00,0,0
-x,-y,z 2[0,0,1]0,0,00,0,0
y,-x,z 4^-1[0,0,1]0,0,00,0,0
x+1/2,-y,-z+1/2 2[1,0,0]1/2,0,00,0,1/4
y,x+1/2,-z+1/2 2[1,1,0]1/4,1/4,0-1/4,0,1/4
-x+1/2,y,-z+1/2 2[0,1,0]0,0,01/4,0,1/4
-y,-x+1/2,-z+1/2 2[-1,1,0]-1/4,1/4,01/4,0,1/4
-x,-y,-z -1--0,0,0
y,-x,-z -4^1[0,0,1]0,0,00,0,0
x,y,-z -2[0,0,1]0,0,00,0,0
-y,x,-z -4^-1[0,0,1]0,0,00,0,0
-x-1/2,y,z-1/2 -2[1,0,0]0,0,-1/2-1/4,0,0
-y,-x-1/2,z-1/2 -2[1,1,0]1/4,-1/4,-1/2-1/4,0,0
x-1/2,-y,z-1/2 -2[0,1,0]-1/2,0,-1/20,0,0
y,x-1/2,z-1/2 -2[-1,1,0]-1/4,-1/4,-1/21/4,0,0
x+1/2,y+1/2,z 1---
-y+1/2,x+1/2,z 4^1[0,0,1]0,0,00,1/2,0
-x+1/2,-y+1/2,z 2[0,0,1]0,0,01/4,1/4,0
y+1/2,-x+1/2,z 4^-1[0,0,1]0,0,01/2,0,0
x+1,-y+1/2,-z+1/2 2[1,0,0]1,0,00,1/4,1/4
y+1/2,x+1,-z+1/2 2[1,1,0]3/4,3/4,0-1/4,0,1/4
-x+1,y+1/2,-z+1/2 2[0,1,0]0,1/2,01/2,0,1/4
-y+1/2,-x+1,-z+1/2 2[-1,1,0]-1/4,1/4,03/4,0,1/4
-x+1/2,-y+1/2,-z -1--1/4,1/4,0
y+1/2,-x+1/2,-z -4^1[0,0,1]0,0,01/2,0,0
x+1/2,y+1/2,-z -2[0,0,1]1/2,1/2,00,0,0
-y+1/2,x+1/2,-z -4^-1[0,0,1]0,0,00,1/2,0
-x,y+1/2,z-1/2 -2[1,0,0]0,1/2,-1/20,0,0
-y+1/2,-x,z-1/2 -2[1,1,0]1/4,-1/4,-1/21/4,0,0
x,-y+1/2,z-1/2 -2[0,1,0]0,0,-1/20,1/4,0
y+1/2,x,z-1/2 -2[-1,1,0]1/4,1/4,-1/21/4,0,0

Space group number: 128
Conventional Hermann-Mauguin symbol: P 4/m n c
Universal    Hermann-Mauguin symbol: P 4/m n c (a+b,-a+b,c)
Hall symbol: -P 4 2n (1/2*x+1/2*y,-1/2*x+1/2*y,z)
Change-of-basis matrix: x-y,x+y,z
               Inverse: 1/2*x+1/2*y,-1/2*x+1/2*y,z

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
i321x,y,z
h16mx,y,0
g162x,1/4,1/4
f1621/4,1/4,z
e840,0,z
d82221/4,1/4,1/4
c82/m1/4,1/4,0
b44/m0,0,1/2
a44/m0,0,0

Harker planes:
Algebraic Normal vector A point in the plane
x-y,-x-y,0[0,0,1]0,0,0
1/2,2*y,2*z+1/2[1,0,0]1/2,0,1/2
x+y,-x-y+1/2,2*z+1/2[1,1,0]0,1/2,1/2
2*x+1/2,0,2*z+1/2[0,1,0]1/2,0,1/2
x+y,x+y+1/2,2*z+1/2[-1,1,0]0,1/2,1/2

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 2
    Vector    Modulus
    (1, 0, 0) 2
    (0, 0, 1) 2

Grid factors implied by symmetries:
  Space group: (2, 2, 2)
  Structure-seminvariant vectors and moduli: (2, 1, 2)
  Euclidean normalizer: (2, 2, 2)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]