[Index of services] [New input]
Input space group symbol: -C 4wd 2ac
Convention: Hall symbol

Number of lattice translations: 2
Space group is centric.
Number of representative symmetry operations: 8
Total number of symmetry operations: 32

Parallelepiped containing an asymmetric unit:
  cctbx Error: Brick is not available for the given space group representation.

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-y+1/4,x+1/4,z+1/2 4^1[0,0,1]0,0,1/20,1/4,0
-x,-y+1/2,z 2[0,0,1]0,0,00,1/4,0
y+3/4,-x+1/4,z+1/2 4^-1[0,0,1]0,0,1/21/2,-1/4,0
x+1/2,-y,-z+1/2 2[1,0,0]1/2,0,00,0,1/4
y+1/4,x+3/4,-z 2[1,1,0]1/2,1/2,0-1/4,0,0
-x+1/2,y+1/2,-z+1/2 2[0,1,0]0,1/2,01/4,0,1/4
-y+3/4,-x+3/4,-z 2[-1,1,0]0,0,03/4,0,0
-x,-y,-z -1--0,0,0
y-1/4,-x-1/4,-z-1/2 -4^1[0,0,1]0,0,0-1/4,0,-1/4
x,y-1/2,-z -2[0,0,1]0,-1/2,00,0,0
-y-3/4,x-1/4,-z-1/2 -4^-1[0,0,1]0,0,0-1/4,-1/2,-1/4
-x-1/2,y,z-1/2 -2[1,0,0]0,0,-1/2-1/4,0,0
-y-1/4,-x-3/4,z -2[1,1,0]1/4,-1/4,0-1/2,0,0
x-1/2,-y-1/2,z-1/2 -2[0,1,0]-1/2,0,-1/20,-1/4,0
y-3/4,x-3/4,z -2[-1,1,0]-3/4,-3/4,00,0,0
x+1/2,y+1/2,z 1---
-y+3/4,x+3/4,z+1/2 4^1[0,0,1]0,0,1/20,3/4,0
-x+1/2,-y+1,z 2[0,0,1]0,0,01/4,1/2,0
y+5/4,-x+3/4,z+1/2 4^-1[0,0,1]0,0,1/21,-1/4,0
x+1,-y+1/2,-z+1/2 2[1,0,0]1,0,00,1/4,1/4
y+3/4,x+5/4,-z 2[1,1,0]1,1,0-1/4,0,0
-x+1,y+1,-z+1/2 2[0,1,0]0,1,01/2,0,1/4
-y+5/4,-x+5/4,-z 2[-1,1,0]0,0,05/4,0,0
-x+1/2,-y+1/2,-z -1--1/4,1/4,0
y+1/4,-x+1/4,-z-1/2 -4^1[0,0,1]0,0,01/4,0,-1/4
x+1/2,y,-z -2[0,0,1]1/2,0,00,0,0
-y-1/4,x+1/4,-z-1/2 -4^-1[0,0,1]0,0,0-1/4,0,-1/4
-x,y+1/2,z-1/2 -2[1,0,0]0,1/2,-1/20,0,0
-y+1/4,-x-1/4,z -2[1,1,0]1/4,-1/4,00,0,0
x,-y,z-1/2 -2[0,1,0]0,0,-1/20,0,0
y-1/4,x-1/4,z -2[-1,1,0]-1/4,-1/4,00,0,0

Space group number: 133
Conventional Hermann-Mauguin symbol: P 42/n b c :2
Universal    Hermann-Mauguin symbol: P 42/n b c :2 (a-b,a+b,c)
Hall symbol: -P 4ac 2b (1/2*x-1/2*y,1/2*x+1/2*y,z)
Change-of-basis matrix: x+y,-x+y,z
               Inverse: 1/2*x-1/2*y,1/2*x+1/2*y,z

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
k321x,y,z
j1620,y,1/4
i162x,x+1/4,1/2
h162x,x+1/4,0
g162-1/4,0,z
f1620,1/4,z
e16-10,0,0
d8-4-1/4,0,-1/4
c82220,1/4,1/4
b8222-1/4,0,0
a82220,1/4,0

Harker planes:
Algebraic Normal vector A point in the plane
x-y+1/4,-x-y+1/4,1/2[0,0,1]1/4,1/4,1/2
2*x,2*y+1/2,0[0,0,1]0,1/2,0
1/2,2*y,2*z+1/2[1,0,0]1/2,0,1/2
x+y+1/4,-x-y+3/4,2*z[1,1,0]1/4,3/4,0
2*x+1/2,1/2,2*z+1/2[0,1,0]1/2,1/2,1/2
x+y+3/4,x+y+3/4,2*z[-1,1,0]3/4,3/4,0

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 2
    Vector    Modulus
    (1, 0, 0) 2
    (0, 0, 1) 2

Grid factors implied by symmetries:
  Space group: (4, 4, 2)
  Structure-seminvariant vectors and moduli: (2, 1, 2)
  Euclidean normalizer: (4, 4, 2)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]