[Index of services] [New input]
Result of symbol lookup:
  Space group number: 203
  Schoenflies symbol: Th^4
  Hermann-Mauguin symbol: F d -3
  Origin choice: 2
  Hall symbol: -F 2uv 2vw 3

Input space group symbol: F d -3 :2
Convention: Default

Number of lattice translations: 4
Space group is centric.
Number of representative symmetry operations: 12
Total number of symmetry operations: 96

Parallelepiped containing an asymmetric unit:
  0<=x<=1/8; 0<=y<=1/8; 0<=z<1

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-x+1/4,-y+1/4,z 2[0,0,1]0,0,01/8,1/8,0
x,-y+1/4,-z+1/4 2[1,0,0]0,0,00,1/8,1/8
-x+1/4,y,-z+1/4 2[0,1,0]0,0,01/8,0,1/8
z,x,y 3^1[1,1,1]0,0,00,0,0
-z+1/4,-x+1/4,y 3^-1[-1,1,1]0,0,01/4,0,0
z,-x+1/4,-y+1/4 3^-1[1,-1,1]0,0,00,1/4,0
-z+1/4,x,-y+1/4 3^1[-1,-1,1]0,0,01/4,1/4,0
y,z,x 3^-1[1,1,1]0,0,00,0,0
y,-z+1/4,-x+1/4 3^-1[-1,-1,1]0,0,01/4,1/4,0
-y+1/4,z,-x+1/4 3^1[-1,1,1]0,0,01/4,0,0
-y+1/4,-z+1/4,x 3^1[1,-1,1]0,0,00,1/4,0
-x,-y,-z -1--0,0,0
x-1/4,y-1/4,-z -2[0,0,1]-1/4,-1/4,00,0,0
-x,y-1/4,z-1/4 -2[1,0,0]0,-1/4,-1/40,0,0
x-1/4,-y,z-1/4 -2[0,1,0]-1/4,0,-1/40,0,0
-z,-x,-y -3^1[1,1,1]0,0,00,0,0
z-1/4,x-1/4,-y -3^-1[-1,1,1]0,0,00,-1/4,1/4
-z,x-1/4,y-1/4 -3^-1[1,-1,1]0,0,01/4,0,-1/4
z-1/4,-x,y-1/4 -3^1[-1,-1,1]0,0,0-1/4,1/4,0
-y,-z,-x -3^-1[1,1,1]0,0,00,0,0
-y,z-1/4,x-1/4 -3^-1[-1,-1,1]0,0,01/4,-1/4,0
y-1/4,-z,x-1/4 -3^1[-1,1,1]0,0,00,1/4,-1/4
y-1/4,z-1/4,-x -3^1[1,-1,1]0,0,0-1/4,0,1/4
x,y+1/2,z+1/2 1---
-x+1/4,-y+3/4,z+1/2 2[0,0,1]0,0,1/21/8,3/8,0
x,-y+3/4,-z+3/4 2[1,0,0]0,0,00,3/8,3/8
-x+1/4,y+1/2,-z+3/4 2[0,1,0]0,1/2,01/8,0,3/8
z,x+1/2,y+1/2 3^1[1,1,1]1/3,1/3,1/3-1/3,-1/6,0
-z+1/4,-x+3/4,y+1/2 3^-1[-1,1,1]-1/3,1/3,1/37/12,-1/6,0
z,-x+3/4,-y+3/4 3^-1[1,-1,1]0,0,00,3/4,0
-z+1/4,x+1/2,-y+3/4 3^1[-1,-1,1]0,0,01/4,3/4,0
y,z+1/2,x+1/2 3^-1[1,1,1]1/3,1/3,1/3-1/6,1/6,0
y,-z+3/4,-x+3/4 3^-1[-1,-1,1]0,0,03/4,3/4,0
-y+1/4,z+1/2,-x+3/4 3^1[-1,1,1]-1/3,1/3,1/35/12,1/6,0
-y+1/4,-z+3/4,x+1/2 3^1[1,-1,1]0,0,0-1/2,3/4,0
-x,-y+1/2,-z+1/2 -1--0,1/4,1/4
x-1/4,y+1/4,-z+1/2 -2[0,0,1]-1/4,1/4,00,0,1/4
-x,y+1/4,z+1/4 -2[1,0,0]0,1/4,1/40,0,0
x-1/4,-y+1/2,z+1/4 -2[0,1,0]-1/4,0,1/40,1/4,0
-z,-x+1/2,-y+1/2 -3^1[1,1,1]0,0,00,1/2,0
z-1/4,x+1/4,-y+1/2 -3^-1[-1,1,1]0,0,00,1/4,1/4
-z,x+1/4,y+1/4 -3^-1[1,-1,1]0,0,0-1/4,0,1/4
z-1/4,-x+1/2,y+1/4 -3^1[-1,-1,1]0,0,01/4,1/4,1/2
-y,-z+1/2,-x+1/2 -3^-1[1,1,1]0,0,00,0,1/2
-y,z+1/4,x+1/4 -3^-1[-1,-1,1]0,0,0-1/4,1/4,0
y-1/4,-z+1/2,x+1/4 -3^1[-1,1,1]0,0,00,1/4,1/4
y-1/4,z+1/4,-x+1/2 -3^1[1,-1,1]0,0,01/4,1/2,1/4
x+1/2,y,z+1/2 1---
-x+3/4,-y+1/4,z+1/2 2[0,0,1]0,0,1/23/8,1/8,0
x+1/2,-y+1/4,-z+3/4 2[1,0,0]1/2,0,00,1/8,3/8
-x+3/4,y,-z+3/4 2[0,1,0]0,0,03/8,0,3/8
z+1/2,x,y+1/2 3^1[1,1,1]1/3,1/3,1/31/6,-1/6,0
-z+3/4,-x+1/4,y+1/2 3^-1[-1,1,1]0,0,03/4,-1/2,0
z+1/2,-x+1/4,-y+3/4 3^-1[1,-1,1]1/3,-1/3,1/31/6,5/12,0
-z+3/4,x,-y+3/4 3^1[-1,-1,1]0,0,03/4,3/4,0
y+1/2,z,x+1/2 3^-1[1,1,1]1/3,1/3,1/3-1/6,-1/3,0
y+1/2,-z+1/4,-x+3/4 3^-1[-1,-1,1]0,0,03/4,1/4,0
-y+3/4,z,-x+3/4 3^1[-1,1,1]0,0,03/4,0,0
-y+3/4,-z+1/4,x+1/2 3^1[1,-1,1]1/3,-1/3,1/3-1/6,7/12,0
-x+1/2,-y,-z+1/2 -1--1/4,0,1/4
x+1/4,y-1/4,-z+1/2 -2[0,0,1]1/4,-1/4,00,0,1/4
-x+1/2,y-1/4,z+1/4 -2[1,0,0]0,-1/4,1/41/4,0,0
x+1/4,-y,z+1/4 -2[0,1,0]1/4,0,1/40,0,0
-z+1/2,-x,-y+1/2 -3^1[1,1,1]0,0,00,0,1/2
z+1/4,x-1/4,-y+1/2 -3^-1[-1,1,1]0,0,01/2,1/4,1/4
-z+1/2,x-1/4,y+1/4 -3^-1[1,-1,1]0,0,01/4,0,1/4
z+1/4,-x,y+1/4 -3^1[-1,-1,1]0,0,01/4,-1/4,0
-y+1/2,-z,-x+1/2 -3^-1[1,1,1]0,0,01/2,0,0
-y+1/2,z-1/4,x+1/4 -3^-1[-1,-1,1]0,0,01/4,1/4,1/2
y+1/4,-z,x+1/4 -3^1[-1,1,1]0,0,00,-1/4,1/4
y+1/4,z-1/4,-x+1/2 -3^1[1,-1,1]0,0,01/4,0,1/4
x+1/2,y+1/2,z 1---
-x+3/4,-y+3/4,z 2[0,0,1]0,0,03/8,3/8,0
x+1/2,-y+3/4,-z+1/4 2[1,0,0]1/2,0,00,3/8,1/8
-x+3/4,y+1/2,-z+1/4 2[0,1,0]0,1/2,03/8,0,1/8
z+1/2,x+1/2,y 3^1[1,1,1]1/3,1/3,1/31/6,1/3,0
-z+3/4,-x+3/4,y 3^-1[-1,1,1]0,0,03/4,0,0
z+1/2,-x+3/4,-y+1/4 3^-1[1,-1,1]0,0,01/2,1/4,0
-z+3/4,x+1/2,-y+1/4 3^1[-1,-1,1]1/3,1/3,-1/35/12,7/12,0
y+1/2,z+1/2,x 3^-1[1,1,1]1/3,1/3,1/31/3,1/6,0
y+1/2,-z+3/4,-x+1/4 3^-1[-1,-1,1]1/3,1/3,-1/37/12,5/12,0
-y+3/4,z+1/2,-x+1/4 3^1[-1,1,1]0,0,01/4,1/2,0
-y+3/4,-z+3/4,x 3^1[1,-1,1]0,0,00,3/4,0
-x+1/2,-y+1/2,-z -1--1/4,1/4,0
x+1/4,y+1/4,-z -2[0,0,1]1/4,1/4,00,0,0
-x+1/2,y+1/4,z-1/4 -2[1,0,0]0,1/4,-1/41/4,0,0
x+1/4,-y+1/2,z-1/4 -2[0,1,0]1/4,0,-1/40,1/4,0
-z+1/2,-x+1/2,-y -3^1[1,1,1]0,0,01/2,0,0
z+1/4,x+1/4,-y -3^-1[-1,1,1]0,0,00,1/4,-1/4
-z+1/2,x+1/4,y-1/4 -3^-1[1,-1,1]0,0,01/4,1/2,1/4
z+1/4,-x+1/2,y-1/4 -3^1[-1,-1,1]0,0,01/4,1/4,0
-y+1/2,-z+1/2,-x -3^-1[1,1,1]0,0,00,1/2,0
-y+1/2,z+1/4,x-1/4 -3^-1[-1,-1,1]0,0,01/4,1/4,0
y+1/4,-z+1/2,x-1/4 -3^1[-1,1,1]0,0,01/2,1/4,1/4
y+1/4,z+1/4,-x -3^1[1,-1,1]0,0,01/4,0,-1/4

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
g961x,y,z
f482x,1/8,1/8
e323x,x,x
d16-31/2,1/2,1/2
c16-30,0,0
b823-3/8,-3/8,-3/8
a8231/8,1/8,1/8

Harker planes:
Algebraic Normal vector A point in the plane
2*x+1/4,2*y+1/4,0[0,0,1]1/4,1/4,0
0,2*y+1/4,2*z+1/4[1,0,0]0,1/4,1/4
2*x+1/4,0,2*z+1/4[0,1,0]1/4,0,1/4
x+z,-x-y,y-z[1,1,1]0,0,0
x+z+1/4,-x-y,-y+z+1/4[-1,-1,1]1/4,0,1/4
x+y+1/4,y-z,x+z+1/4[-1,1,1]1/4,0,1/4
x+y+1/4,y-z+1/4,-x-z[1,-1,1]1/4,1/4,0

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 1
    Vector    Modulus
    (1, 0, 0) 2
  Further generators:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
y,x,z -2[-1,1,0]0,0,00,0,0

Grid factors implied by symmetries:
  Space group: (4, 4, 4)
  Structure-seminvariant vectors and moduli: (2, 1, 1)
  Euclidean normalizer: (4, 4, 4)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]