[Index of services] [New input]
Result of symbol lookup:
  Space group number: 69
  Schoenflies symbol: D2h^23
  Hermann-Mauguin symbol: F m m m
  Hall symbol: -F 2 2

Input space group symbol: F m m m
Convention: Default

Number of lattice translations: 4
Space group is centric.
Number of representative symmetry operations: 4
Total number of symmetry operations: 32

Parallelepiped containing an asymmetric unit:
  0<=x<=1/4; 0<=y<=1/4; 0<=z<=1/2

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-x,-y,z 2[0,0,1]0,0,00,0,0
x,-y,-z 2[1,0,0]0,0,00,0,0
-x,y,-z 2[0,1,0]0,0,00,0,0
-x,-y,-z -1--0,0,0
x,y,-z -2[0,0,1]0,0,00,0,0
-x,y,z -2[1,0,0]0,0,00,0,0
x,-y,z -2[0,1,0]0,0,00,0,0
x,y+1/2,z+1/2 1---
-x,-y+1/2,z+1/2 2[0,0,1]0,0,1/20,1/4,0
x,-y+1/2,-z+1/2 2[1,0,0]0,0,00,1/4,1/4
-x,y+1/2,-z+1/2 2[0,1,0]0,1/2,00,0,1/4
-x,-y+1/2,-z+1/2 -1--0,1/4,1/4
x,y+1/2,-z+1/2 -2[0,0,1]0,1/2,00,0,1/4
-x,y+1/2,z+1/2 -2[1,0,0]0,1/2,1/20,0,0
x,-y+1/2,z+1/2 -2[0,1,0]0,0,1/20,1/4,0
x+1/2,y,z+1/2 1---
-x+1/2,-y,z+1/2 2[0,0,1]0,0,1/21/4,0,0
x+1/2,-y,-z+1/2 2[1,0,0]1/2,0,00,0,1/4
-x+1/2,y,-z+1/2 2[0,1,0]0,0,01/4,0,1/4
-x+1/2,-y,-z+1/2 -1--1/4,0,1/4
x+1/2,y,-z+1/2 -2[0,0,1]1/2,0,00,0,1/4
-x+1/2,y,z+1/2 -2[1,0,0]0,0,1/21/4,0,0
x+1/2,-y,z+1/2 -2[0,1,0]1/2,0,1/20,0,0
x+1/2,y+1/2,z 1---
-x+1/2,-y+1/2,z 2[0,0,1]0,0,01/4,1/4,0
x+1/2,-y+1/2,-z 2[1,0,0]1/2,0,00,1/4,0
-x+1/2,y+1/2,-z 2[0,1,0]0,1/2,01/4,0,0
-x+1/2,-y+1/2,-z -1--1/4,1/4,0
x+1/2,y+1/2,-z -2[0,0,1]1/2,1/2,00,0,0
-x+1/2,y+1/2,z -2[1,0,0]0,1/2,01/4,0,0
x+1/2,-y+1/2,z -2[0,1,0]1/2,0,00,1/4,0

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
p321x,y,z
o16mx,y,0
n16mx,0,z
m16m0,y,z
l162x,1/4,1/4
k1621/4,y,1/4
j1621/4,1/4,z
i8mm20,0,z
h8mm20,y,0
g8mm2x,0,0
f82221/4,1/4,1/4
e82/m1/4,1/4,0
d82/m1/4,0,1/4
c82/m0,1/4,1/4
b4mmm0,0,1/2
a4mmm0,0,0

Harker planes:
Algebraic Normal vector A point in the plane
2*x,2*y,0[0,0,1]0,0,0
0,2*y,2*z[1,0,0]0,0,0
2*x,0,2*z[0,1,0]0,0,0

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 1
    Vector    Modulus
    (1, 0, 0) 2

Grid factors implied by symmetries:
  Space group: (2, 2, 2)
  Structure-seminvariant vectors and moduli: (2, 1, 1)
  Euclidean normalizer: (2, 2, 2)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]