[Index of services]
[New input]
Result of symbol lookup:
Space group number: 220
Schoenflies symbol: Td^6
Hermann-Mauguin symbol: I -4 3 d
Hall symbol: I -4bd 2c 3
Input space group symbol: I -4 3 d
Convention: Default
Number of lattice translations: 2
Space group is acentric.
Number of representative symmetry operations: 24
Total number of symmetry operations: 48
Parallelepiped containing an asymmetric unit:
-1/8<=x<=1/8; 0<=y<=1/8; 0<z<7/8
List of symmetry operations:
Matrix
| Rotation-part type
| Axis direction
| Screw/glide component
| Origin shift
|
x,y,z
| 1 | - | - | -
|
y+1/4,-x+3/4,-z+1/4
| -4^1 | [0,0,1] | 0,0,0 | 1/2,1/4,1/8
|
-x,-y+1/2,z
| 2 | [0,0,1] | 0,0,0 | 0,1/4,0
|
-y+3/4,x+3/4,-z+1/4
| -4^-1 | [0,0,1] | 0,0,0 | 0,3/4,1/8
|
x,-y,-z+1/2
| 2 | [1,0,0] | 0,0,0 | 0,0,1/4
|
-y+1/4,-x+3/4,z+3/4
| -2 | [1,1,0] | -1/4,1/4,3/4 | 1/2,0,0
|
-x,y+1/2,-z+1/2
| 2 | [0,1,0] | 0,1/2,0 | 0,0,1/4
|
y+3/4,x+3/4,z+3/4
| -2 | [-1,1,0] | 3/4,3/4,3/4 | 0,0,0
|
z,x,y
| 3^1 | [1,1,1] | 0,0,0 | 0,0,0
|
x+1/4,-z+3/4,-y+1/4
| -2 | [0,1,1] | 1/4,1/4,-1/4 | 0,1/2,0
|
-z,-x+1/2,y
| 3^-1 | [-1,1,1] | -1/6,1/6,1/6 | 1/6,1/6,0
|
-x+3/4,z+3/4,-y+1/4
| -4^1 | [1,0,0] | 0,0,0 | 3/8,1/2,-1/4
|
z,-x,-y+1/2
| 3^-1 | [1,-1,1] | 1/6,-1/6,1/6 | -1/6,1/3,0
|
-x+1/4,-z+3/4,y+3/4
| -4^-1 | [1,0,0] | 0,0,0 | 1/8,0,3/4
|
-z,x+1/2,-y+1/2
| 3^1 | [-1,-1,1] | 0,0,0 | 0,1/2,0
|
x+3/4,z+3/4,y+3/4
| -2 | [0,-1,1] | 3/4,3/4,3/4 | 0,0,0
|
y,z,x
| 3^-1 | [1,1,1] | 0,0,0 | 0,0,0
|
y,-z,-x+1/2
| 3^-1 | [-1,-1,1] | -1/6,-1/6,1/6 | 1/3,1/6,0
|
-z+1/4,-y+3/4,x+3/4
| -4^1 | [0,1,0] | 0,0,0 | -1/4,3/8,1/2
|
-y,z+1/2,-x+1/2
| 3^1 | [-1,1,1] | -1/3,1/3,1/3 | 1/6,1/6,0
|
z+1/4,y+1/4,x+1/4
| -2 | [-1,0,1] | 1/4,1/4,1/4 | 0,0,0
|
-y+1/2,-z,x+1/2
| 3^1 | [1,-1,1] | 1/3,-1/3,1/3 | -1/6,1/3,0
|
-z+1/4,y+1/4,-x+3/4
| -2 | [1,0,1] | -1/4,1/4,1/4 | 1/2,0,0
|
z+3/4,-y+1/4,-x+3/4
| -4^-1 | [0,1,0] | 0,0,0 | 3/4,1/8,0
|
x+1/2,y+1/2,z+1/2
| 1 | - | - | -
|
y+3/4,-x+5/4,-z+3/4
| -4^1 | [0,0,1] | 0,0,0 | 1,1/4,3/8
|
-x+1/2,-y+1,z+1/2
| 2 | [0,0,1] | 0,0,1/2 | 1/4,1/2,0
|
-y+5/4,x+5/4,-z+3/4
| -4^-1 | [0,0,1] | 0,0,0 | 0,5/4,3/8
|
x+1/2,-y+1/2,-z+1
| 2 | [1,0,0] | 1/2,0,0 | 0,1/4,1/2
|
-y+3/4,-x+5/4,z+5/4
| -2 | [1,1,0] | -1/4,1/4,5/4 | 1,0,0
|
-x+1/2,y+1,-z+1
| 2 | [0,1,0] | 0,1,0 | 1/4,0,1/2
|
y+5/4,x+5/4,z+5/4
| -2 | [-1,1,0] | 5/4,5/4,5/4 | 0,0,0
|
z+1/2,x+1/2,y+1/2
| 3^1 | [1,1,1] | 1/2,1/2,1/2 | 0,0,0
|
x+3/4,-z+5/4,-y+3/4
| -2 | [0,1,1] | 3/4,1/4,-1/4 | 0,1,0
|
-z+1/2,-x+1,y+1/2
| 3^-1 | [-1,1,1] | -1/3,1/3,1/3 | 5/6,-1/6,0
|
-x+5/4,z+5/4,-y+3/4
| -4^1 | [1,0,0] | 0,0,0 | 5/8,1,-1/4
|
z+1/2,-x+1/2,-y+1
| 3^-1 | [1,-1,1] | 1/3,-1/3,1/3 | 1/6,2/3,0
|
-x+3/4,-z+5/4,y+5/4
| -4^-1 | [1,0,0] | 0,0,0 | 3/8,0,5/4
|
-z+1/2,x+1,-y+1
| 3^1 | [-1,-1,1] | 1/6,1/6,-1/6 | 1/3,7/6,0
|
x+5/4,z+5/4,y+5/4
| -2 | [0,-1,1] | 5/4,5/4,5/4 | 0,0,0
|
y+1/2,z+1/2,x+1/2
| 3^-1 | [1,1,1] | 1/2,1/2,1/2 | 0,0,0
|
y+1/2,-z+1/2,-x+1
| 3^-1 | [-1,-1,1] | 0,0,0 | 1,1/2,0
|
-z+3/4,-y+5/4,x+5/4
| -4^1 | [0,1,0] | 0,0,0 | -1/4,5/8,1
|
-y+1/2,z+1,-x+1
| 3^1 | [-1,1,1] | -1/2,1/2,1/2 | 1/2,1/2,0
|
z+3/4,y+3/4,x+3/4
| -2 | [-1,0,1] | 3/4,3/4,3/4 | 0,0,0
|
-y+1,-z+1/2,x+1
| 3^1 | [1,-1,1] | 1/2,-1/2,1/2 | -1/2,1,0
|
-z+3/4,y+3/4,-x+5/4
| -2 | [1,0,1] | -1/4,3/4,1/4 | 1,0,0
|
z+5/4,-y+3/4,-x+5/4
| -4^-1 | [0,1,0] | 0,0,0 | 5/4,3/8,0
|
List of Wyckoff positions:
Wyckoff letter
| Multiplicity
| Site symmetry point group type
| Representative special position operator
|
e | 48 | 1 | x,y,z
|
d | 24 | 2 | x,0,1/4
|
c | 16 | 3 | x,x,x
|
b | 12 | -4 | -1/8,0,1/4
|
a | 12 | -4 | 3/8,0,1/4
|
Harker planes:
Algebraic
| Normal vector
| A point in the plane
|
2*x,2*y+1/2,0 | [0,0,1] | 0,1/2,0
|
0,2*y,2*z+1/2 | [1,0,0] | 0,0,1/2
|
2*x,1/2,2*z+1/2 | [0,1,0] | 0,1/2,1/2
|
x+z,-x-y,y-z | [1,1,1] | 0,0,0
|
x+z,-x-y+1/2,-y+z+1/2 | [-1,-1,1] | 0,1/2,1/2
|
x+y,y-z+1/2,x+z+1/2 | [-1,1,1] | 0,1/2,1/2
|
x+y+1/2,y-z,-x-z+1/2 | [1,-1,1] | 1/2,0,1/2
|
Additional generators of Euclidean normalizer:
Number of structure-seminvariant vectors and moduli: 0
Inversion through a centre at: 0,0,0
Grid factors implied by symmetries:
Space group: (4, 4, 4)
Structure-seminvariant vectors and moduli: (1, 1, 1)
Euclidean normalizer: (4, 4, 4)
All points of a grid over the unit cell are mapped
exactly onto other grid points only if the factors
shown above are factors of the grid.
[Index of services]
[New input]