[Index of services]
[New input]
Result of symbol lookup:
  Space group number: 217
  Schoenflies symbol: Td^3
  Hermann-Mauguin symbol: I -4 3 m
  Hall symbol: I -4 2 3
Input space group symbol: I -4 3 m
Convention: Default
Number of lattice translations: 2
Space group is acentric.
Number of representative symmetry operations: 24
Total number of symmetry operations: 48
Parallelepiped containing an asymmetric unit:
  0<=x<=1/4; 0<=y<=1/4; 0<=z<1
List of symmetry operations:
| Matrix | Rotation-part type | Axis direction | Screw/glide component | Origin shift | 
| x,y,z | 1 | - | - | - | 
| y,-x,-z | -4^1 | [0,0,1] | 0,0,0 | 0,0,0 | 
| -x,-y,z | 2 | [0,0,1] | 0,0,0 | 0,0,0 | 
| -y,x,-z | -4^-1 | [0,0,1] | 0,0,0 | 0,0,0 | 
| x,-y,-z | 2 | [1,0,0] | 0,0,0 | 0,0,0 | 
| -y,-x,z | -2 | [1,1,0] | 0,0,0 | 0,0,0 | 
| -x,y,-z | 2 | [0,1,0] | 0,0,0 | 0,0,0 | 
| y,x,z | -2 | [-1,1,0] | 0,0,0 | 0,0,0 | 
| z,x,y | 3^1 | [1,1,1] | 0,0,0 | 0,0,0 | 
| x,-z,-y | -2 | [0,1,1] | 0,0,0 | 0,0,0 | 
| -z,-x,y | 3^-1 | [-1,1,1] | 0,0,0 | 0,0,0 | 
| -x,z,-y | -4^1 | [1,0,0] | 0,0,0 | 0,0,0 | 
| z,-x,-y | 3^-1 | [1,-1,1] | 0,0,0 | 0,0,0 | 
| -x,-z,y | -4^-1 | [1,0,0] | 0,0,0 | 0,0,0 | 
| -z,x,-y | 3^1 | [-1,-1,1] | 0,0,0 | 0,0,0 | 
| x,z,y | -2 | [0,-1,1] | 0,0,0 | 0,0,0 | 
| y,z,x | 3^-1 | [1,1,1] | 0,0,0 | 0,0,0 | 
| y,-z,-x | 3^-1 | [-1,-1,1] | 0,0,0 | 0,0,0 | 
| -z,-y,x | -4^1 | [0,1,0] | 0,0,0 | 0,0,0 | 
| -y,z,-x | 3^1 | [-1,1,1] | 0,0,0 | 0,0,0 | 
| z,y,x | -2 | [-1,0,1] | 0,0,0 | 0,0,0 | 
| -y,-z,x | 3^1 | [1,-1,1] | 0,0,0 | 0,0,0 | 
| -z,y,-x | -2 | [1,0,1] | 0,0,0 | 0,0,0 | 
| z,-y,-x | -4^-1 | [0,1,0] | 0,0,0 | 0,0,0 | 
| x+1/2,y+1/2,z+1/2 | 1 | - | - | - | 
| y+1/2,-x+1/2,-z+1/2 | -4^1 | [0,0,1] | 0,0,0 | 1/2,0,1/4 | 
| -x+1/2,-y+1/2,z+1/2 | 2 | [0,0,1] | 0,0,1/2 | 1/4,1/4,0 | 
| -y+1/2,x+1/2,-z+1/2 | -4^-1 | [0,0,1] | 0,0,0 | 0,1/2,1/4 | 
| x+1/2,-y+1/2,-z+1/2 | 2 | [1,0,0] | 1/2,0,0 | 0,1/4,1/4 | 
| -y+1/2,-x+1/2,z+1/2 | -2 | [1,1,0] | 0,0,1/2 | 1/2,0,0 | 
| -x+1/2,y+1/2,-z+1/2 | 2 | [0,1,0] | 0,1/2,0 | 1/4,0,1/4 | 
| y+1/2,x+1/2,z+1/2 | -2 | [-1,1,0] | 1/2,1/2,1/2 | 0,0,0 | 
| z+1/2,x+1/2,y+1/2 | 3^1 | [1,1,1] | 1/2,1/2,1/2 | 0,0,0 | 
| x+1/2,-z+1/2,-y+1/2 | -2 | [0,1,1] | 1/2,0,0 | 0,1/2,0 | 
| -z+1/2,-x+1/2,y+1/2 | 3^-1 | [-1,1,1] | -1/6,1/6,1/6 | 2/3,-1/3,0 | 
| -x+1/2,z+1/2,-y+1/2 | -4^1 | [1,0,0] | 0,0,0 | 1/4,1/2,0 | 
| z+1/2,-x+1/2,-y+1/2 | 3^-1 | [1,-1,1] | 1/6,-1/6,1/6 | 1/3,1/3,0 | 
| -x+1/2,-z+1/2,y+1/2 | -4^-1 | [1,0,0] | 0,0,0 | 1/4,0,1/2 | 
| -z+1/2,x+1/2,-y+1/2 | 3^1 | [-1,-1,1] | 1/6,1/6,-1/6 | 1/3,2/3,0 | 
| x+1/2,z+1/2,y+1/2 | -2 | [0,-1,1] | 1/2,1/2,1/2 | 0,0,0 | 
| y+1/2,z+1/2,x+1/2 | 3^-1 | [1,1,1] | 1/2,1/2,1/2 | 0,0,0 | 
| y+1/2,-z+1/2,-x+1/2 | 3^-1 | [-1,-1,1] | 1/6,1/6,-1/6 | 2/3,1/3,0 | 
| -z+1/2,-y+1/2,x+1/2 | -4^1 | [0,1,0] | 0,0,0 | 0,1/4,1/2 | 
| -y+1/2,z+1/2,-x+1/2 | 3^1 | [-1,1,1] | -1/6,1/6,1/6 | 1/3,1/3,0 | 
| z+1/2,y+1/2,x+1/2 | -2 | [-1,0,1] | 1/2,1/2,1/2 | 0,0,0 | 
| -y+1/2,-z+1/2,x+1/2 | 3^1 | [1,-1,1] | 1/6,-1/6,1/6 | -1/3,2/3,0 | 
| -z+1/2,y+1/2,-x+1/2 | -2 | [1,0,1] | 0,1/2,0 | 1/2,0,0 | 
| z+1/2,-y+1/2,-x+1/2 | -4^-1 | [0,1,0] | 0,0,0 | 1/2,1/4,0 | 
List of Wyckoff positions:
| Wyckoff letter | Multiplicity | Site symmetry point group type
 | Representative special position operator | 
| h | 48 | 1 | x,y,z | 
| g | 24 | m | x,x,z | 
| f | 24 | 2 | x,1/2,0 | 
| e | 12 | mm2 | x,0,0 | 
| d | 12 | -4 | 1/4,1/2,0 | 
| c | 8 | 3m | x,x,x | 
| b | 6 | -42m | 0,1/2,1/2 | 
| a | 2 | -43m | 0,0,0 | 
Harker planes:
| Algebraic | Normal vector | A point in the plane | 
| 2*x,2*y,0 | [0,0,1] | 0,0,0 | 
| 0,2*y,2*z | [1,0,0] | 0,0,0 | 
| 2*x,0,2*z | [0,1,0] | 0,0,0 | 
| x+z,-x-y,y-z | [1,1,1] | 0,0,0 | 
| x+z,-x-y,-y+z | [-1,-1,1] | 0,0,0 | 
| x+y,y-z,x+z | [-1,1,1] | 0,0,0 | 
| x+y,y-z,-x-z | [1,-1,1] | 0,0,0 | 
Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 0
  Inversion through a centre at: 0,0,0
Grid factors implied by symmetries:
  Space group: (2, 2, 2)
  Structure-seminvariant vectors and moduli: (1, 1, 1)
  Euclidean normalizer: (2, 2, 2)
  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.
[Index of services]
[New input]