[Index of services]
[New input]
Result of symbol lookup:
Space group number: 217
Schoenflies symbol: Td^3
Hermann-Mauguin symbol: I -4 3 m
Hall symbol: I -4 2 3
Input space group symbol: I -4 3 m
Convention: Default
Number of lattice translations: 2
Space group is acentric.
Number of representative symmetry operations: 24
Total number of symmetry operations: 48
Parallelepiped containing an asymmetric unit:
0<=x<=1/4; 0<=y<=1/4; 0<=z<1
List of symmetry operations:
Matrix
| Rotation-part type
| Axis direction
| Screw/glide component
| Origin shift
|
x,y,z
| 1 | - | - | -
|
y,-x,-z
| -4^1 | [0,0,1] | 0,0,0 | 0,0,0
|
-x,-y,z
| 2 | [0,0,1] | 0,0,0 | 0,0,0
|
-y,x,-z
| -4^-1 | [0,0,1] | 0,0,0 | 0,0,0
|
x,-y,-z
| 2 | [1,0,0] | 0,0,0 | 0,0,0
|
-y,-x,z
| -2 | [1,1,0] | 0,0,0 | 0,0,0
|
-x,y,-z
| 2 | [0,1,0] | 0,0,0 | 0,0,0
|
y,x,z
| -2 | [-1,1,0] | 0,0,0 | 0,0,0
|
z,x,y
| 3^1 | [1,1,1] | 0,0,0 | 0,0,0
|
x,-z,-y
| -2 | [0,1,1] | 0,0,0 | 0,0,0
|
-z,-x,y
| 3^-1 | [-1,1,1] | 0,0,0 | 0,0,0
|
-x,z,-y
| -4^1 | [1,0,0] | 0,0,0 | 0,0,0
|
z,-x,-y
| 3^-1 | [1,-1,1] | 0,0,0 | 0,0,0
|
-x,-z,y
| -4^-1 | [1,0,0] | 0,0,0 | 0,0,0
|
-z,x,-y
| 3^1 | [-1,-1,1] | 0,0,0 | 0,0,0
|
x,z,y
| -2 | [0,-1,1] | 0,0,0 | 0,0,0
|
y,z,x
| 3^-1 | [1,1,1] | 0,0,0 | 0,0,0
|
y,-z,-x
| 3^-1 | [-1,-1,1] | 0,0,0 | 0,0,0
|
-z,-y,x
| -4^1 | [0,1,0] | 0,0,0 | 0,0,0
|
-y,z,-x
| 3^1 | [-1,1,1] | 0,0,0 | 0,0,0
|
z,y,x
| -2 | [-1,0,1] | 0,0,0 | 0,0,0
|
-y,-z,x
| 3^1 | [1,-1,1] | 0,0,0 | 0,0,0
|
-z,y,-x
| -2 | [1,0,1] | 0,0,0 | 0,0,0
|
z,-y,-x
| -4^-1 | [0,1,0] | 0,0,0 | 0,0,0
|
x+1/2,y+1/2,z+1/2
| 1 | - | - | -
|
y+1/2,-x+1/2,-z+1/2
| -4^1 | [0,0,1] | 0,0,0 | 1/2,0,1/4
|
-x+1/2,-y+1/2,z+1/2
| 2 | [0,0,1] | 0,0,1/2 | 1/4,1/4,0
|
-y+1/2,x+1/2,-z+1/2
| -4^-1 | [0,0,1] | 0,0,0 | 0,1/2,1/4
|
x+1/2,-y+1/2,-z+1/2
| 2 | [1,0,0] | 1/2,0,0 | 0,1/4,1/4
|
-y+1/2,-x+1/2,z+1/2
| -2 | [1,1,0] | 0,0,1/2 | 1/2,0,0
|
-x+1/2,y+1/2,-z+1/2
| 2 | [0,1,0] | 0,1/2,0 | 1/4,0,1/4
|
y+1/2,x+1/2,z+1/2
| -2 | [-1,1,0] | 1/2,1/2,1/2 | 0,0,0
|
z+1/2,x+1/2,y+1/2
| 3^1 | [1,1,1] | 1/2,1/2,1/2 | 0,0,0
|
x+1/2,-z+1/2,-y+1/2
| -2 | [0,1,1] | 1/2,0,0 | 0,1/2,0
|
-z+1/2,-x+1/2,y+1/2
| 3^-1 | [-1,1,1] | -1/6,1/6,1/6 | 2/3,-1/3,0
|
-x+1/2,z+1/2,-y+1/2
| -4^1 | [1,0,0] | 0,0,0 | 1/4,1/2,0
|
z+1/2,-x+1/2,-y+1/2
| 3^-1 | [1,-1,1] | 1/6,-1/6,1/6 | 1/3,1/3,0
|
-x+1/2,-z+1/2,y+1/2
| -4^-1 | [1,0,0] | 0,0,0 | 1/4,0,1/2
|
-z+1/2,x+1/2,-y+1/2
| 3^1 | [-1,-1,1] | 1/6,1/6,-1/6 | 1/3,2/3,0
|
x+1/2,z+1/2,y+1/2
| -2 | [0,-1,1] | 1/2,1/2,1/2 | 0,0,0
|
y+1/2,z+1/2,x+1/2
| 3^-1 | [1,1,1] | 1/2,1/2,1/2 | 0,0,0
|
y+1/2,-z+1/2,-x+1/2
| 3^-1 | [-1,-1,1] | 1/6,1/6,-1/6 | 2/3,1/3,0
|
-z+1/2,-y+1/2,x+1/2
| -4^1 | [0,1,0] | 0,0,0 | 0,1/4,1/2
|
-y+1/2,z+1/2,-x+1/2
| 3^1 | [-1,1,1] | -1/6,1/6,1/6 | 1/3,1/3,0
|
z+1/2,y+1/2,x+1/2
| -2 | [-1,0,1] | 1/2,1/2,1/2 | 0,0,0
|
-y+1/2,-z+1/2,x+1/2
| 3^1 | [1,-1,1] | 1/6,-1/6,1/6 | -1/3,2/3,0
|
-z+1/2,y+1/2,-x+1/2
| -2 | [1,0,1] | 0,1/2,0 | 1/2,0,0
|
z+1/2,-y+1/2,-x+1/2
| -4^-1 | [0,1,0] | 0,0,0 | 1/2,1/4,0
|
List of Wyckoff positions:
Wyckoff letter
| Multiplicity
| Site symmetry point group type
| Representative special position operator
|
h | 48 | 1 | x,y,z
|
g | 24 | m | x,x,z
|
f | 24 | 2 | x,1/2,0
|
e | 12 | mm2 | x,0,0
|
d | 12 | -4 | 1/4,1/2,0
|
c | 8 | 3m | x,x,x
|
b | 6 | -42m | 0,1/2,1/2
|
a | 2 | -43m | 0,0,0
|
Harker planes:
Algebraic
| Normal vector
| A point in the plane
|
2*x,2*y,0 | [0,0,1] | 0,0,0
|
0,2*y,2*z | [1,0,0] | 0,0,0
|
2*x,0,2*z | [0,1,0] | 0,0,0
|
x+z,-x-y,y-z | [1,1,1] | 0,0,0
|
x+z,-x-y,-y+z | [-1,-1,1] | 0,0,0
|
x+y,y-z,x+z | [-1,1,1] | 0,0,0
|
x+y,y-z,-x-z | [1,-1,1] | 0,0,0
|
Additional generators of Euclidean normalizer:
Number of structure-seminvariant vectors and moduli: 0
Inversion through a centre at: 0,0,0
Grid factors implied by symmetries:
Space group: (2, 2, 2)
Structure-seminvariant vectors and moduli: (1, 1, 1)
Euclidean normalizer: (2, 2, 2)
All points of a grid over the unit cell are mapped
exactly onto other grid points only if the factors
shown above are factors of the grid.
[Index of services]
[New input]