[Index of services] [New input]
Result of symbol lookup:
  Space group number: 199
  Schoenflies symbol: T^5
  Hermann-Mauguin symbol: I 21 3
  Hall symbol: I 2b 2c 3

Input space group symbol: I 21 3
Convention: Default

Number of lattice translations: 2
Space group is acentric.
Space group is chiral.
Number of representative symmetry operations: 12
Total number of symmetry operations: 24

Parallelepiped containing an asymmetric unit:
  0<=x<=1/4; 0<=y<1/2; 0<z<3/4

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-x,-y+1/2,z 2[0,0,1]0,0,00,1/4,0
x,-y,-z+1/2 2[1,0,0]0,0,00,0,1/4
-x,y+1/2,-z+1/2 2[0,1,0]0,1/2,00,0,1/4
z,x,y 3^1[1,1,1]0,0,00,0,0
-z,-x+1/2,y 3^-1[-1,1,1]-1/6,1/6,1/61/6,1/6,0
z,-x,-y+1/2 3^-1[1,-1,1]1/6,-1/6,1/6-1/6,1/3,0
-z,x+1/2,-y+1/2 3^1[-1,-1,1]0,0,00,1/2,0
y,z,x 3^-1[1,1,1]0,0,00,0,0
y,-z,-x+1/2 3^-1[-1,-1,1]-1/6,-1/6,1/61/3,1/6,0
-y,z+1/2,-x+1/2 3^1[-1,1,1]-1/3,1/3,1/31/6,1/6,0
-y+1/2,-z,x+1/2 3^1[1,-1,1]1/3,-1/3,1/3-1/6,1/3,0
x+1/2,y+1/2,z+1/2 1---
-x+1/2,-y+1,z+1/2 2[0,0,1]0,0,1/21/4,1/2,0
x+1/2,-y+1/2,-z+1 2[1,0,0]1/2,0,00,1/4,1/2
-x+1/2,y+1,-z+1 2[0,1,0]0,1,01/4,0,1/2
z+1/2,x+1/2,y+1/2 3^1[1,1,1]1/2,1/2,1/20,0,0
-z+1/2,-x+1,y+1/2 3^-1[-1,1,1]-1/3,1/3,1/35/6,-1/6,0
z+1/2,-x+1/2,-y+1 3^-1[1,-1,1]1/3,-1/3,1/31/6,2/3,0
-z+1/2,x+1,-y+1 3^1[-1,-1,1]1/6,1/6,-1/61/3,7/6,0
y+1/2,z+1/2,x+1/2 3^-1[1,1,1]1/2,1/2,1/20,0,0
y+1/2,-z+1/2,-x+1 3^-1[-1,-1,1]0,0,01,1/2,0
-y+1/2,z+1,-x+1 3^1[-1,1,1]-1/2,1/2,1/21/2,1/2,0
-y+1,-z+1/2,x+1 3^1[1,-1,1]1/2,-1/2,1/2-1/2,1,0

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
c241x,y,z
b122x,0,1/4
a83x,x,x

Harker planes:
Algebraic Normal vector A point in the plane
2*x,2*y+1/2,0[0,0,1]0,1/2,0
0,2*y,2*z+1/2[1,0,0]0,0,1/2
2*x,1/2,2*z+1/2[0,1,0]0,1/2,1/2
x+z,-x-y,y-z[1,1,1]0,0,0
x+z,-x-y+1/2,-y+z+1/2[-1,-1,1]0,1/2,1/2
x+y,y-z+1/2,x+z+1/2[-1,1,1]0,1/2,1/2
x+y+1/2,y-z,-x-z+1/2[1,-1,1]1/2,0,1/2

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 0
  Inversion through a centre at: 0,0,0
  Further generators:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
y+1/4,x+1/4,z+1/4 -2[-1,1,0]1/4,1/4,1/40,0,0

Grid factors implied by symmetries:
  Space group: (2, 2, 2)
  Structure-seminvariant vectors and moduli: (1, 1, 1)
  Euclidean normalizer: (4, 4, 4)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]