[Index of services]
[New input]
Result of symbol lookup:
Space group number: 80
Schoenflies symbol: C4^6
Hermann-Mauguin symbol: I 41
Hall symbol: I 4bw
Input space group symbol: I 41
Convention: Default
Number of lattice translations: 2
Space group is acentric.
Space group is chiral.
Number of representative symmetry operations: 4
Total number of symmetry operations: 8
Parallelepiped containing an asymmetric unit:
0<=x<=1/4; 1/4<=y<=3/4; 0<=z<1
List of symmetry operations:
Matrix
| Rotation-part type
| Axis direction
| Screw/glide component
| Origin shift
|
x,y,z
| 1 | - | - | -
|
-y,x+1/2,z+1/4
| 4^1 | [0,0,1] | 0,0,1/4 | -1/4,1/4,0
|
-x+1/2,-y+1/2,z+1/2
| 2 | [0,0,1] | 0,0,1/2 | 1/4,1/4,0
|
y+1/2,-x,z+3/4
| 4^-1 | [0,0,1] | 0,0,3/4 | 1/4,-1/4,0
|
x+1/2,y+1/2,z+1/2
| 1 | - | - | -
|
-y+1/2,x+1,z+3/4
| 4^1 | [0,0,1] | 0,0,3/4 | -1/4,3/4,0
|
-x+1,-y+1,z+1
| 2 | [0,0,1] | 0,0,1 | 1/2,1/2,0
|
y+1,-x+1/2,z+5/4
| 4^-1 | [0,0,1] | 0,0,5/4 | 3/4,-1/4,0
|
List of Wyckoff positions:
Wyckoff letter
| Multiplicity
| Site symmetry point group type
| Representative special position operator
|
b | 8 | 1 | x,y,z
|
a | 4 | 2 | 0,0,z
|
Harker planes:
Algebraic
| Normal vector
| A point in the plane
|
x-y,-x-y+1/2,1/4 | [0,0,1] | 0,1/2,1/4
|
2*x+1/2,2*y+1/2,1/2 | [0,0,1] | 1/2,1/2,1/2
|
Additional generators of Euclidean normalizer:
Number of structure-seminvariant vectors and moduli: 1
Vector Modulus
(0, 0, 1) 0
Inversion through a centre at: 1/4,0,0
Further generators:
Matrix
| Rotation-part type
| Axis direction
| Screw/glide component
| Origin shift
|
y,x,-z
| 2 | [1,1,0] | 0,0,0 | 0,0,0
|
Grid factors implied by symmetries:
Space group: (2, 2, 4)
Structure-seminvariant vectors and moduli: (1, 1, 1)
Euclidean normalizer: (2, 2, 4)
All points of a grid over the unit cell are mapped
exactly onto other grid points only if the factors
shown above are factors of the grid.
[Index of services]
[New input]