[Index of services] [New input]
Result of symbol lookup:
  Space group number: 162
  Schoenflies symbol: D3d^1
  Hermann-Mauguin symbol: P -3 1 m
  Hall symbol: -P 3 2

Input space group symbol: P -3 1 m
Convention: Default

Number of lattice translations: 1
Space group is centric.
Number of representative symmetry operations: 6
Total number of symmetry operations: 12

Parallelepiped containing an asymmetric unit:
  0<=x<=2/3; 0<=y<=1/3; 0<=z<=1/2

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-y,x-y,z 3^1[0,0,1]0,0,00,0,0
-x+y,-x,z 3^-1[0,0,1]0,0,00,0,0
-y,-x,-z 2[-1,1,0]0,0,00,0,0
x,x-y,-z 2[2,1,0]0,0,00,0,0
-x+y,y,-z 2[1,2,0]0,0,00,0,0
-x,-y,-z -1--0,0,0
y,-x+y,-z -3^1[0,0,1]0,0,00,0,0
x-y,x,-z -3^-1[0,0,1]0,0,00,0,0
y,x,z -2[-1,1,0]0,0,00,0,0
-x,-x+y,z -2[2,1,0]0,0,00,0,0
x-y,-y,z -2[1,2,0]0,0,00,0,0

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
l121x,y,z
k6mx,0,z
j62x,-x,1/2
i62x,-x,0
h431/3,-1/3,z
g32/m1/2,0,1/2
f32/m1/2,0,0
e23m0,0,z
d2321/3,-1/3,1/2
c2321/3,-1/3,0
b1-3m0,0,1/2
a1-3m0,0,0

Harker planes:
Algebraic Normal vector A point in the plane
x-y,-x-2*y,0[0,0,1]0,0,0
x+y,x+y,2*z[-1,1,0]0,0,0
0,x-2*y,2*z[2,1,0]0,0,0
2*x+y,0,2*z[1,2,0]0,0,0

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 1
    Vector    Modulus
    (0, 0, 1) 2
  Further generators:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
-x,-y,z 2[0,0,1]0,0,00,0,0

Grid factors implied by symmetries:
  Space group: (1, 1, 1)
  Structure-seminvariant vectors and moduli: (1, 1, 2)
  Euclidean normalizer: (1, 1, 2)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]