[Index of services] [New input]
Result of symbol lookup:
  Space group number: 165
  Schoenflies symbol: D3d^4
  Hermann-Mauguin symbol: P -3 c 1
  Hall symbol: -P 3 2"c

Input space group symbol: P -3 c 1
Convention: Default

Number of lattice translations: 1
Space group is centric.
Number of representative symmetry operations: 6
Total number of symmetry operations: 12

Parallelepiped containing an asymmetric unit:
  0<=x<=2/3; 0<=y<=1/3; 0<=z<1/2

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-y,x-y,z 3^1[0,0,1]0,0,00,0,0
-x+y,-x,z 3^-1[0,0,1]0,0,00,0,0
y,x,-z+1/2 2[1,1,0]0,0,00,0,1/4
-x,-x+y,-z+1/2 2[0,1,0]0,0,00,0,1/4
x-y,-y,-z+1/2 2[1,0,0]0,0,00,0,1/4
-x,-y,-z -1--0,0,0
y,-x+y,-z -3^1[0,0,1]0,0,00,0,0
x-y,x,-z -3^-1[0,0,1]0,0,00,0,0
-y,-x,z-1/2 -2[1,1,0]0,0,-1/20,0,0
x,x-y,z-1/2 -2[0,1,0]0,0,-1/20,0,0
-x+y,y,z-1/2 -2[1,0,0]0,0,-1/20,0,0

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
g121x,y,z
f62x,0,1/4
e6-11/2,0,0
d431/3,-1/3,z
c430,0,z
b2-30,0,0
a2320,0,1/4

Harker planes:
Algebraic Normal vector A point in the plane
x-y,-x-2*y,0[0,0,1]0,0,0
x+y,-x-y,2*z+1/2[1,1,0]0,0,1/2
2*x,x,2*z+1/2[0,1,0]0,0,1/2
y,2*y,2*z+1/2[1,0,0]0,0,1/2

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 1
    Vector    Modulus
    (0, 0, 1) 2
  Further generators:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
-x,-y,z 2[0,0,1]0,0,00,0,0

Grid factors implied by symmetries:
  Space group: (1, 1, 2)
  Structure-seminvariant vectors and moduli: (1, 1, 2)
  Euclidean normalizer: (1, 1, 2)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]