[Index of services] [New input]
Result of symbol lookup:
  Space group number: 195
  Schoenflies symbol: T^1
  Hermann-Mauguin symbol: P 2 3
  Hall symbol: P 2 2 3

Input space group symbol: P 2 3
Convention: Default

Number of lattice translations: 1
Space group is acentric.
Space group is chiral.
Number of representative symmetry operations: 12
Total number of symmetry operations: 12

Parallelepiped containing an asymmetric unit:
  0<=x<=1/2; 0<=y<=1/2; 0<=z<1

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-x,-y,z 2[0,0,1]0,0,00,0,0
x,-y,-z 2[1,0,0]0,0,00,0,0
-x,y,-z 2[0,1,0]0,0,00,0,0
z,x,y 3^1[1,1,1]0,0,00,0,0
-z,-x,y 3^-1[-1,1,1]0,0,00,0,0
z,-x,-y 3^-1[1,-1,1]0,0,00,0,0
-z,x,-y 3^1[-1,-1,1]0,0,00,0,0
y,z,x 3^-1[1,1,1]0,0,00,0,0
y,-z,-x 3^-1[-1,-1,1]0,0,00,0,0
-y,z,-x 3^1[-1,1,1]0,0,00,0,0
-y,-z,x 3^1[1,-1,1]0,0,00,0,0

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
j121x,y,z
i62x,1/2,1/2
h62x,1/2,0
g62x,0,1/2
f62x,0,0
e43x,x,x
d32221/2,0,0
c32220,1/2,1/2
b1231/2,1/2,1/2
a1230,0,0

Harker planes:
Algebraic Normal vector A point in the plane
2*x,2*y,0[0,0,1]0,0,0
0,2*y,2*z[1,0,0]0,0,0
2*x,0,2*z[0,1,0]0,0,0
x+z,-x-y,y-z[1,1,1]0,0,0
x+z,-x-y,-y+z[-1,-1,1]0,0,0
x+y,y-z,x+z[-1,1,1]0,0,0
x+y,y-z,-x-z[1,-1,1]0,0,0

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 1
    Vector    Modulus
    (1, 1, 1) 2
  Inversion through a centre at: 0,0,0
  Further generators:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
y,x,z -2[-1,1,0]0,0,00,0,0

Grid factors implied by symmetries:
  Space group: (1, 1, 1)
  Structure-seminvariant vectors and moduli: (2, 2, 2)
  Euclidean normalizer: (2, 2, 2)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]