[Index of services]
[New input]
Result of symbol lookup:
Space group number: 192
Schoenflies symbol: D6h^2
Hermann-Mauguin symbol: P 6/m c c
Hall symbol: -P 6 2c
Input space group symbol: P 6/m c c
Convention: Default
Number of lattice translations: 1
Space group is centric.
Number of representative symmetry operations: 12
Total number of symmetry operations: 24
Parallelepiped containing an asymmetric unit:
0<=x<=2/3; 0<=y<=1/3; 0<=z<=1/4
List of symmetry operations:
Matrix
| Rotation-part type
| Axis direction
| Screw/glide component
| Origin shift
|
x,y,z
| 1 | - | - | -
|
x-y,x,z
| 6^1 | [0,0,1] | 0,0,0 | 0,0,0
|
-y,x-y,z
| 3^1 | [0,0,1] | 0,0,0 | 0,0,0
|
-x,-y,z
| 2 | [0,0,1] | 0,0,0 | 0,0,0
|
-x+y,-x,z
| 3^-1 | [0,0,1] | 0,0,0 | 0,0,0
|
y,-x+y,z
| 6^-1 | [0,0,1] | 0,0,0 | 0,0,0
|
-y,-x,-z+1/2
| 2 | [-1,1,0] | 0,0,0 | 0,0,1/4
|
x-y,-y,-z+1/2
| 2 | [1,0,0] | 0,0,0 | 0,0,1/4
|
x,x-y,-z+1/2
| 2 | [2,1,0] | 0,0,0 | 0,0,1/4
|
y,x,-z+1/2
| 2 | [1,1,0] | 0,0,0 | 0,0,1/4
|
-x+y,y,-z+1/2
| 2 | [1,2,0] | 0,0,0 | 0,0,1/4
|
-x,-x+y,-z+1/2
| 2 | [0,1,0] | 0,0,0 | 0,0,1/4
|
-x,-y,-z
| -1 | - | - | 0,0,0
|
-x+y,-x,-z
| -6^1 | [0,0,1] | 0,0,0 | 0,0,0
|
y,-x+y,-z
| -3^1 | [0,0,1] | 0,0,0 | 0,0,0
|
x,y,-z
| -2 | [0,0,1] | 0,0,0 | 0,0,0
|
x-y,x,-z
| -3^-1 | [0,0,1] | 0,0,0 | 0,0,0
|
-y,x-y,-z
| -6^-1 | [0,0,1] | 0,0,0 | 0,0,0
|
y,x,z-1/2
| -2 | [-1,1,0] | 0,0,-1/2 | 0,0,0
|
-x+y,y,z-1/2
| -2 | [1,0,0] | 0,0,-1/2 | 0,0,0
|
-x,-x+y,z-1/2
| -2 | [2,1,0] | 0,0,-1/2 | 0,0,0
|
-y,-x,z-1/2
| -2 | [1,1,0] | 0,0,-1/2 | 0,0,0
|
x-y,-y,z-1/2
| -2 | [1,2,0] | 0,0,-1/2 | 0,0,0
|
x,x-y,z-1/2
| -2 | [0,1,0] | 0,0,-1/2 | 0,0,0
|
List of Wyckoff positions:
Wyckoff letter
| Multiplicity
| Site symmetry point group type
| Representative special position operator
|
m | 24 | 1 | x,y,z
|
l | 12 | m | x,y,0
|
k | 12 | 2 | x,2*x,1/4
|
j | 12 | 2 | x,0,1/4
|
i | 12 | 2 | 1/2,0,z
|
h | 8 | 3 | 1/3,-1/3,z
|
g | 6 | 2/m | 1/2,0,0
|
f | 6 | 222 | 1/2,0,1/4
|
e | 4 | 6 | 0,0,z
|
d | 4 | -6 | 1/3,-1/3,0
|
c | 4 | 32 | 1/3,-1/3,1/4
|
b | 2 | 6/m | 0,0,0
|
a | 2 | 622 | 0,0,1/4
|
Harker planes:
Algebraic
| Normal vector
| A point in the plane
|
-y,-x-y,0 | [0,0,1] | 0,0,0
|
x+y,x+y,2*z+1/2 | [-1,1,0] | 0,0,1/2
|
y,2*y,2*z+1/2 | [1,0,0] | 0,0,1/2
|
0,x-2*y,2*z+1/2 | [2,1,0] | 0,0,1/2
|
x+y,-x-y,2*z+1/2 | [1,1,0] | 0,0,1/2
|
2*x+y,0,2*z+1/2 | [1,2,0] | 0,0,1/2
|
2*x,x,2*z+1/2 | [0,1,0] | 0,0,1/2
|
Additional generators of Euclidean normalizer:
Number of structure-seminvariant vectors and moduli: 1
Vector Modulus
(0, 0, 1) 2
Grid factors implied by symmetries:
Space group: (1, 1, 2)
Structure-seminvariant vectors and moduli: (1, 1, 2)
Euclidean normalizer: (1, 1, 2)
All points of a grid over the unit cell are mapped
exactly onto other grid points only if the factors
shown above are factors of the grid.
[Index of services]
[New input]