[Index of services] [New input]
Result of symbol lookup:
  Space group number: 47
  Schoenflies symbol: D2h^1
  Hermann-Mauguin symbol: P m m m
  Hall symbol: -P 2 2

Input space group symbol: P m m m
Convention: Default

Number of lattice translations: 1
Space group is centric.
Number of representative symmetry operations: 4
Total number of symmetry operations: 8

Parallelepiped containing an asymmetric unit:
  0<=x<=1/2; 0<=y<=1/2; 0<=z<=1/2

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-x,-y,z 2[0,0,1]0,0,00,0,0
x,-y,-z 2[1,0,0]0,0,00,0,0
-x,y,-z 2[0,1,0]0,0,00,0,0
-x,-y,-z -1--0,0,0
x,y,-z -2[0,0,1]0,0,00,0,0
-x,y,z -2[1,0,0]0,0,00,0,0
x,-y,z -2[0,1,0]0,0,00,0,0

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
@81x,y,z
z4mx,y,1/2
y4mx,y,0
x4mx,1/2,z
w4mx,0,z
v4m1/2,y,z
u4m0,y,z
t2mm21/2,1/2,z
s2mm21/2,0,z
r2mm20,1/2,z
q2mm20,0,z
p2mm21/2,y,1/2
o2mm21/2,y,0
n2mm20,y,1/2
m2mm20,y,0
l2mm2x,1/2,1/2
k2mm2x,1/2,0
j2mm2x,0,1/2
i2mm2x,0,0
h1mmm1/2,1/2,1/2
g1mmm0,1/2,1/2
f1mmm1/2,1/2,0
e1mmm0,1/2,0
d1mmm1/2,0,1/2
c1mmm0,0,1/2
b1mmm1/2,0,0
a1mmm0,0,0

Harker planes:
Algebraic Normal vector A point in the plane
2*x,2*y,0[0,0,1]0,0,0
0,2*y,2*z[1,0,0]0,0,0
2*x,0,2*z[0,1,0]0,0,0

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 3
    Vector    Modulus
    (1, 0, 0) 2
    (0, 1, 0) 2
    (0, 0, 1) 2

Grid factors implied by symmetries:
  Space group: (1, 1, 1)
  Structure-seminvariant vectors and moduli: (2, 2, 2)
  Euclidean normalizer: (2, 2, 2)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]