[Index of services]
[New input]
Result of symbol lookup:
Space group number: 222
Schoenflies symbol: Oh^2
Hermann-Mauguin symbol: P n -3 n
Origin choice: 2
Hall symbol: -P 4a 2bc 3
Input space group symbol: P n -3 n :2
Convention: Default
Number of lattice translations: 1
Space group is centric.
Number of representative symmetry operations: 24
Total number of symmetry operations: 48
Parallelepiped containing an asymmetric unit:
0<=x<=1/4; 0<=y<=1/4; 1/4<=z<=3/4
List of symmetry operations:
Matrix
| Rotation-part type
| Axis direction
| Screw/glide component
| Origin shift
|
x,y,z
| 1 | - | - | -
|
-y+1/2,x,z
| 4^1 | [0,0,1] | 0,0,0 | 1/4,1/4,0
|
-x+1/2,-y+1/2,z
| 2 | [0,0,1] | 0,0,0 | 1/4,1/4,0
|
y,-x+1/2,z
| 4^-1 | [0,0,1] | 0,0,0 | 1/4,1/4,0
|
x,-y+1/2,-z+1/2
| 2 | [1,0,0] | 0,0,0 | 0,1/4,1/4
|
y,x,-z+1/2
| 2 | [1,1,0] | 0,0,0 | 0,0,1/4
|
-x+1/2,y,-z+1/2
| 2 | [0,1,0] | 0,0,0 | 1/4,0,1/4
|
-y+1/2,-x+1/2,-z+1/2
| 2 | [-1,1,0] | 0,0,0 | 1/2,0,1/4
|
z,x,y
| 3^1 | [1,1,1] | 0,0,0 | 0,0,0
|
-x+1/2,z,y
| 2 | [0,1,1] | 0,0,0 | 1/4,0,0
|
-z+1/2,-x+1/2,y
| 3^-1 | [-1,1,1] | 0,0,0 | 1/2,0,0
|
x,-z+1/2,y
| 4^1 | [1,0,0] | 0,0,0 | 0,1/4,1/4
|
z,-x+1/2,-y+1/2
| 3^-1 | [1,-1,1] | 0,0,0 | 0,1/2,0
|
x,z,-y+1/2
| 4^-1 | [1,0,0] | 0,0,0 | 0,1/4,1/4
|
-z+1/2,x,-y+1/2
| 3^1 | [-1,-1,1] | 0,0,0 | 1/2,1/2,0
|
-x+1/2,-z+1/2,-y+1/2
| 2 | [0,-1,1] | 0,0,0 | 1/4,1/2,0
|
y,z,x
| 3^-1 | [1,1,1] | 0,0,0 | 0,0,0
|
y,-z+1/2,-x+1/2
| 3^-1 | [-1,-1,1] | 0,0,0 | 1/2,1/2,0
|
z,y,-x+1/2
| 4^1 | [0,1,0] | 0,0,0 | 1/4,0,1/4
|
-y+1/2,z,-x+1/2
| 3^1 | [-1,1,1] | 0,0,0 | 1/2,0,0
|
-z+1/2,-y+1/2,-x+1/2
| 2 | [-1,0,1] | 0,0,0 | 1/2,1/4,0
|
-y+1/2,-z+1/2,x
| 3^1 | [1,-1,1] | 0,0,0 | 0,1/2,0
|
z,-y+1/2,x
| 2 | [1,0,1] | 0,0,0 | 0,1/4,0
|
-z+1/2,y,x
| 4^-1 | [0,1,0] | 0,0,0 | 1/4,0,1/4
|
-x,-y,-z
| -1 | - | - | 0,0,0
|
y-1/2,-x,-z
| -4^1 | [0,0,1] | 0,0,0 | -1/4,1/4,0
|
x-1/2,y-1/2,-z
| -2 | [0,0,1] | -1/2,-1/2,0 | 0,0,0
|
-y,x-1/2,-z
| -4^-1 | [0,0,1] | 0,0,0 | 1/4,-1/4,0
|
-x,y-1/2,z-1/2
| -2 | [1,0,0] | 0,-1/2,-1/2 | 0,0,0
|
-y,-x,z-1/2
| -2 | [1,1,0] | 0,0,-1/2 | 0,0,0
|
x-1/2,-y,z-1/2
| -2 | [0,1,0] | -1/2,0,-1/2 | 0,0,0
|
y-1/2,x-1/2,z-1/2
| -2 | [-1,1,0] | -1/2,-1/2,-1/2 | 0,0,0
|
-z,-x,-y
| -3^1 | [1,1,1] | 0,0,0 | 0,0,0
|
x-1/2,-z,-y
| -2 | [0,1,1] | -1/2,0,0 | 0,0,0
|
z-1/2,x-1/2,-y
| -3^-1 | [-1,1,1] | 0,0,0 | 0,-1/2,1/2
|
-x,z-1/2,-y
| -4^1 | [1,0,0] | 0,0,0 | 0,-1/4,1/4
|
-z,x-1/2,y-1/2
| -3^-1 | [1,-1,1] | 0,0,0 | 1/2,0,-1/2
|
-x,-z,y-1/2
| -4^-1 | [1,0,0] | 0,0,0 | 0,1/4,-1/4
|
z-1/2,-x,y-1/2
| -3^1 | [-1,-1,1] | 0,0,0 | -1/2,1/2,0
|
x-1/2,z-1/2,y-1/2
| -2 | [0,-1,1] | -1/2,-1/2,-1/2 | 0,0,0
|
-y,-z,-x
| -3^-1 | [1,1,1] | 0,0,0 | 0,0,0
|
-y,z-1/2,x-1/2
| -3^-1 | [-1,-1,1] | 0,0,0 | 1/2,-1/2,0
|
-z,-y,x-1/2
| -4^1 | [0,1,0] | 0,0,0 | 1/4,0,-1/4
|
y-1/2,-z,x-1/2
| -3^1 | [-1,1,1] | 0,0,0 | 0,1/2,-1/2
|
z-1/2,y-1/2,x-1/2
| -2 | [-1,0,1] | -1/2,-1/2,-1/2 | 0,0,0
|
y-1/2,z-1/2,-x
| -3^1 | [1,-1,1] | 0,0,0 | -1/2,0,1/2
|
-z,y-1/2,-x
| -2 | [1,0,1] | 0,-1/2,0 | 0,0,0
|
z-1/2,-y,-x
| -4^-1 | [0,1,0] | 0,0,0 | -1/4,0,1/4
|
List of Wyckoff positions:
Wyckoff letter
| Multiplicity
| Site symmetry point group type
| Representative special position operator
|
i | 48 | 1 | x,y,z
|
h | 24 | 2 | 1/4,y,y
|
g | 24 | 2 | x,-1/4,1/4
|
f | 16 | 3 | x,x,x
|
e | 12 | 4 | x,1/4,1/4
|
d | 12 | -4 | 0,-1/4,1/4
|
c | 8 | -3 | 0,0,0
|
b | 6 | 422 | -1/4,1/4,1/4
|
a | 2 | 432 | 1/4,1/4,1/4
|
Harker planes:
Algebraic
| Normal vector
| A point in the plane
|
x-y+1/2,-x-y,0 | [0,0,1] | 1/2,0,0
|
0,2*y+1/2,2*z+1/2 | [1,0,0] | 0,1/2,1/2
|
x+y,-x-y,2*z+1/2 | [1,1,0] | 0,0,1/2
|
2*x+1/2,0,2*z+1/2 | [0,1,0] | 1/2,0,1/2
|
x+y+1/2,x+y+1/2,2*z+1/2 | [-1,1,0] | 1/2,1/2,1/2
|
x+z,-x-y,y-z | [1,1,1] | 0,0,0
|
2*x+1/2,y+z,-y-z | [0,1,1] | 1/2,0,0
|
x+z+1/2,-x-y,-y+z+1/2 | [-1,-1,1] | 1/2,0,1/2
|
2*x+1/2,y+z+1/2,y+z+1/2 | [0,-1,1] | 1/2,1/2,1/2
|
x+y+1/2,y-z,x+z+1/2 | [-1,1,1] | 1/2,0,1/2
|
x+z+1/2,2*y+1/2,x+z+1/2 | [-1,0,1] | 1/2,1/2,1/2
|
x+y+1/2,y-z+1/2,-x-z | [1,-1,1] | 1/2,1/2,0
|
x+z,2*y+1/2,-x-z | [1,0,1] | 0,1/2,0
|
Additional generators of Euclidean normalizer:
Number of structure-seminvariant vectors and moduli: 1
Vector Modulus
(1, 1, 1) 2
Grid factors implied by symmetries:
Space group: (2, 2, 2)
Structure-seminvariant vectors and moduli: (2, 2, 2)
Euclidean normalizer: (2, 2, 2)
All points of a grid over the unit cell are mapped
exactly onto other grid points only if the factors
shown above are factors of the grid.
[Index of services]
[New input]