[Index of services] [New input]
Result of symbol lookup:
  Space group number: 222
  Schoenflies symbol: Oh^2
  Hermann-Mauguin symbol: P n -3 n
  Origin choice: 2
  Hall symbol: -P 4a 2bc 3

Input space group symbol: P n -3 n :2
Convention: Default

Number of lattice translations: 1
Space group is centric.
Number of representative symmetry operations: 24
Total number of symmetry operations: 48

Parallelepiped containing an asymmetric unit:
  0<=x<=1/4; 0<=y<=1/4; 1/4<=z<=3/4

List of symmetry operations:
Matrix Rotation-part type Axis direction Screw/glide component Origin shift
x,y,z 1---
-y+1/2,x,z 4^1[0,0,1]0,0,01/4,1/4,0
-x+1/2,-y+1/2,z 2[0,0,1]0,0,01/4,1/4,0
y,-x+1/2,z 4^-1[0,0,1]0,0,01/4,1/4,0
x,-y+1/2,-z+1/2 2[1,0,0]0,0,00,1/4,1/4
y,x,-z+1/2 2[1,1,0]0,0,00,0,1/4
-x+1/2,y,-z+1/2 2[0,1,0]0,0,01/4,0,1/4
-y+1/2,-x+1/2,-z+1/2 2[-1,1,0]0,0,01/2,0,1/4
z,x,y 3^1[1,1,1]0,0,00,0,0
-x+1/2,z,y 2[0,1,1]0,0,01/4,0,0
-z+1/2,-x+1/2,y 3^-1[-1,1,1]0,0,01/2,0,0
x,-z+1/2,y 4^1[1,0,0]0,0,00,1/4,1/4
z,-x+1/2,-y+1/2 3^-1[1,-1,1]0,0,00,1/2,0
x,z,-y+1/2 4^-1[1,0,0]0,0,00,1/4,1/4
-z+1/2,x,-y+1/2 3^1[-1,-1,1]0,0,01/2,1/2,0
-x+1/2,-z+1/2,-y+1/2 2[0,-1,1]0,0,01/4,1/2,0
y,z,x 3^-1[1,1,1]0,0,00,0,0
y,-z+1/2,-x+1/2 3^-1[-1,-1,1]0,0,01/2,1/2,0
z,y,-x+1/2 4^1[0,1,0]0,0,01/4,0,1/4
-y+1/2,z,-x+1/2 3^1[-1,1,1]0,0,01/2,0,0
-z+1/2,-y+1/2,-x+1/2 2[-1,0,1]0,0,01/2,1/4,0
-y+1/2,-z+1/2,x 3^1[1,-1,1]0,0,00,1/2,0
z,-y+1/2,x 2[1,0,1]0,0,00,1/4,0
-z+1/2,y,x 4^-1[0,1,0]0,0,01/4,0,1/4
-x,-y,-z -1--0,0,0
y-1/2,-x,-z -4^1[0,0,1]0,0,0-1/4,1/4,0
x-1/2,y-1/2,-z -2[0,0,1]-1/2,-1/2,00,0,0
-y,x-1/2,-z -4^-1[0,0,1]0,0,01/4,-1/4,0
-x,y-1/2,z-1/2 -2[1,0,0]0,-1/2,-1/20,0,0
-y,-x,z-1/2 -2[1,1,0]0,0,-1/20,0,0
x-1/2,-y,z-1/2 -2[0,1,0]-1/2,0,-1/20,0,0
y-1/2,x-1/2,z-1/2 -2[-1,1,0]-1/2,-1/2,-1/20,0,0
-z,-x,-y -3^1[1,1,1]0,0,00,0,0
x-1/2,-z,-y -2[0,1,1]-1/2,0,00,0,0
z-1/2,x-1/2,-y -3^-1[-1,1,1]0,0,00,-1/2,1/2
-x,z-1/2,-y -4^1[1,0,0]0,0,00,-1/4,1/4
-z,x-1/2,y-1/2 -3^-1[1,-1,1]0,0,01/2,0,-1/2
-x,-z,y-1/2 -4^-1[1,0,0]0,0,00,1/4,-1/4
z-1/2,-x,y-1/2 -3^1[-1,-1,1]0,0,0-1/2,1/2,0
x-1/2,z-1/2,y-1/2 -2[0,-1,1]-1/2,-1/2,-1/20,0,0
-y,-z,-x -3^-1[1,1,1]0,0,00,0,0
-y,z-1/2,x-1/2 -3^-1[-1,-1,1]0,0,01/2,-1/2,0
-z,-y,x-1/2 -4^1[0,1,0]0,0,01/4,0,-1/4
y-1/2,-z,x-1/2 -3^1[-1,1,1]0,0,00,1/2,-1/2
z-1/2,y-1/2,x-1/2 -2[-1,0,1]-1/2,-1/2,-1/20,0,0
y-1/2,z-1/2,-x -3^1[1,-1,1]0,0,0-1/2,0,1/2
-z,y-1/2,-x -2[1,0,1]0,-1/2,00,0,0
z-1/2,-y,-x -4^-1[0,1,0]0,0,0-1/4,0,1/4

List of Wyckoff positions:
Wyckoff letter Multiplicity Site symmetry
point group type
Representative special position operator
i481x,y,z
h2421/4,y,y
g242x,-1/4,1/4
f163x,x,x
e124x,1/4,1/4
d12-40,-1/4,1/4
c8-30,0,0
b6422-1/4,1/4,1/4
a24321/4,1/4,1/4

Harker planes:
Algebraic Normal vector A point in the plane
x-y+1/2,-x-y,0[0,0,1]1/2,0,0
0,2*y+1/2,2*z+1/2[1,0,0]0,1/2,1/2
x+y,-x-y,2*z+1/2[1,1,0]0,0,1/2
2*x+1/2,0,2*z+1/2[0,1,0]1/2,0,1/2
x+y+1/2,x+y+1/2,2*z+1/2[-1,1,0]1/2,1/2,1/2
x+z,-x-y,y-z[1,1,1]0,0,0
2*x+1/2,y+z,-y-z[0,1,1]1/2,0,0
x+z+1/2,-x-y,-y+z+1/2[-1,-1,1]1/2,0,1/2
2*x+1/2,y+z+1/2,y+z+1/2[0,-1,1]1/2,1/2,1/2
x+y+1/2,y-z,x+z+1/2[-1,1,1]1/2,0,1/2
x+z+1/2,2*y+1/2,x+z+1/2[-1,0,1]1/2,1/2,1/2
x+y+1/2,y-z+1/2,-x-z[1,-1,1]1/2,1/2,0
x+z,2*y+1/2,-x-z[1,0,1]0,1/2,0

Additional generators of Euclidean normalizer:
  Number of structure-seminvariant vectors and moduli: 1
    Vector    Modulus
    (1, 1, 1) 2

Grid factors implied by symmetries:
  Space group: (2, 2, 2)
  Structure-seminvariant vectors and moduli: (2, 2, 2)
  Euclidean normalizer: (2, 2, 2)

  All points of a grid over the unit cell are mapped
  exactly onto other grid points only if the factors
  shown above are factors of the grid.


[Index of services] [New input]