An implementation of XDS integration for DIALS

James Parkhurst

Design principles (interfaces)

Integrator hierarchy See Graeme Winter's talk

XDS

- Program for processing single-crystal monochromatic diffraction data recorded by the rotation method
- Differs from other 2D integration programs such as Mosflm by integrating reflection profiles in 3D
- Described in Kabsch, W. (2010). Integration, scaling, space-group assignment and post-refinement. *Acta Crystallographica Section D Biological Crystallography*, 66(Pt 2), 133–44.

Overview

- Modeling rotation images
 - Spot prediction
 - Localizing diffraction spots
 - Basis extraction
 - Indexing
 - Refinement

- Integration
 - Reflection mask
 - Background subtraction
 - Reciprocal space transform
 - Intensity Estimation

Spot prediction: method

- Purpose: To obtain detector coordinates and rotation angles for each predicted reflection
- Generate observable miller
 indices
- For each index calculate:
 - intersection angle with Ewald sphere
 - diffracted beam vector
 - intersection point of diffracted beam vector
 with detector plane

Spot prediction: results

 $\phi = \phi_0; z = 0$

 $\phi = \phi_1; z = 1$

 $\phi = \phi_2; z = 2$

Spot positions validated to within 0.1 pixels w.r.t refined XDS spot positions

Reciprocal space transform: coordinate system

Definition:

 $e_1 = S_1 \times S_0 / |S_1 \times S_0|$ $e_2 = S_1 \times e_1 / |S_1 \times e_1|$ $e_3 = S_1 + S_0 / |S_1 + S_0|$

Motivation:

- Rotation about a fixed axis leads to an increase in the path length through the Ewald sphere.
- Transformed reflections have a standard shape and appear to have followed the shortest path through the Ewald sphere.

Reciprocal space transform: mapping

Formula

$$\varepsilon_{1} = \boldsymbol{e}_{1} \cdot \frac{(\boldsymbol{S}' - \boldsymbol{S}_{1})}{|\boldsymbol{S}_{1}|} \times \frac{180}{\pi} \qquad \varepsilon_{2} = \boldsymbol{e}_{2} \cdot \frac{(\boldsymbol{S}' - \boldsymbol{S}_{1})}{|\boldsymbol{S}_{1}|} \times \frac{180}{\pi}$$
$$\varepsilon_{3} = \boldsymbol{e}_{3} \cdot \frac{[R(\boldsymbol{m}_{2}, \varphi' - \varphi)\boldsymbol{p}^{*} - \boldsymbol{p}^{*}]}{|\boldsymbol{p}^{*}|} \times \frac{180}{\pi} \approx \zeta \cdot (\varphi' - \varphi)$$

 ζ is related to the inverse Lorentz correction factor.

e₃ transform

$$\zeta = \boldsymbol{m}_2. \boldsymbol{e}_1$$
$$L^{-1} = \frac{|\boldsymbol{m}_2.(\boldsymbol{S}_1 \times \boldsymbol{S}_0)|}{|\boldsymbol{S}_1||\boldsymbol{S}_0|} = |\zeta \sin \angle (\boldsymbol{S}_1, \boldsymbol{S}_0)|$$

e₁/e₂ transform

Reciprocal space transform: required steps

Calculate reflection mask
Calculate reflection mask
Subtract background intensity
Perform reciprocal space transform

Reflection mask: calculating the shoebox

- Reflection mask uses standard deviation of beam divergence (σ_D) and mosaicity (σ_M) in reciprocal space to set shoebox around each reflection
- shoebox <= $|n\sigma_D|\mathbf{e}_1$, $|n\sigma_D|\mathbf{e}_2$, | $n\sigma_M|\mathbf{e}_3$
- Detector coordinates and rotation angles at limits are calculated to obtain shoebox in detector space
- Results in shoebox specific to each reflection

Reflection mask: images

Single frame:

Whole dataset:

Background subtraction: method

- Assume enough pixels available (> 10) to calculate background
- Assume background intensity distributed normally
- Remove high intensity pixels, one at a time, until intensity is normally distributed
- Select mean of remaining pixels as background intensity

Background subtraction: results

Whole dataset

ame:

Whole frame:

Reciprocal space transform: gridding frames

- Assume Gaussian spot profiles along e₃
- Integrate over range of ϕ for the image frame, j:

 $I_j = \int_{\Gamma_j} \exp(-(\phi' - \phi)^2 / 2\sigma^2) d\phi'$

 Integrate over the intersection of the range of phi range of the grid point v₃, and image frame, j:

$$I_{\nu_{3}j} = \int_{\Gamma_{j} \cap \Gamma_{\nu_{3}}} \exp(-(\phi' - \phi)^{2}/2\sigma^{2})d\phi'$$

 Fraction of intensity contributed by image frame, j to grid coordinate, v₃ is: I<sub>v₃j
</sub>

Reciprocal space transform: gridding pixels

- Assumes flat distribution of intensity over pixel area
- Pixels sub-divided into 5x5 equal areas
- 1/25 intensity is given to transformed grid point

Detector image

Transformed reflection profiles

Transformed reflection profiles

Summary

- Implemented XDS algorithms for:
 - spot prediction
 - reflection mask calculation
 - background subtraction
 - reciprocal space transform
- Further work:
 - algorithms basically work but need to be rigorously tested
 - implementation of 'missing' XDS algorithms

Questions?

