The DIALS Framework

James Parkhurst

» diamond
|

Overview

* DIALS aims to provide a framework for developing
integration algorithms.

e Users should be able to develop their own algorithms
and be given a simple way to enable their algorithm
within the framework.

e Development of the framework has so far been
incidental to the development of the basic algorithms: a

proper design is needed!

“*"This talk will attempt to describe:
— — The current state of the framework
\—E\roposed future developments

) diamond
J'|

The DIALS Framework

==-CURRENT STATUS

/ﬁ

)) 3 diamond
I

Current Status

* A basic ‘framework’ is in place with the
following components:

— dxtbx and experimental models

— Crystal model

— Reflection ‘bucket’ container

— Factory methods to create major components

— Script class to manage common command line
application configuration

o NAIgorithm configuration via phil parameters

) diamond
J'|

dxtbx and experimental models

* The dxtbx experimental models are used throughout
to provide data access.

* The ImageSet/ImageSweep classes are used to

provide access to image data and experimental
models.

e Some algorithms are configured to alter their

behaviour based on whether they are given a sweep

. (rotation data) or an imageset (sequence of still
| images).*

*Only the spot finder does this at the moment!

) diamond
|

Factory functions

 Top-level algorithms (spot finder, refinement and
integration) are configured via factory functions.

* The input parameters are given in the form of phil
parameters.

 This allows simple instantiation of the requested
algorithm from the input parameters as shown in the
example.

 Current implementation is not easily extendable: new
algorithms need to be added to a large “if”

\statement\.

) diamond
J'|

Factory functions

class IntegratorFactory(object):

@staticmethod

def from_parameters(params):
Configure the algorithms to extract reflections, compute the
background intensity and integrate the reflection intensity
compute_spots = IntegratorFactory.configure_extractor(params)
compute_background = IntegratorFactory.configure_background(params)
compute_centroid = IntegratorFactory.configure centroid(params)
compute_intensity = IntegratorFactory.configure intensity(params)
correct_intensity = IntegratorFactory.configure correction(params)

Return the integrator with the given strategies

return Integrator(compute_spots = compute_ spots,
compute_background = compute_background,
compute_centroid = compute_centroid,
compute _intensity = compute_intensity,
correct _intensity = correct_intensity)

Instantiate the integrator
—_— integrator = IntegratorFactory.from_parameters(params)

N\
\ The IntegratorFactory
class

: diamond

Command line script classes

* Enables simple consistent command-line script
creation.

e ScriptRunner class sets up default command line
options and logging, and loads global phil
parameters.

e Scripts inherit from the ScriptRunner class and
overload the “main” function to perform their

= processing.

— *There are (non standard library) python packages to do this (pycli,

ment). Could'be worth looking at, although would introduce another
dependancy. u

diamond

Command line script classes

class Script(ScriptRunner):

def init (self):
usage = "usage: %prog [options] [param.phil] " \
"sweep.json crystal.json [reference.pickle]™

ScriptRunner.__init__ (self, usage=usage)

Add a command line parameter
self.config().add_option(
'-0', '--output-filename',
dest = 'output_filename',
type = 'string', default = 'integrated.pickle',
help = 'Set the filename for integrated reflections.')

def main(self, params, options, args):

Print the command line help

if len(args) != 2:
self.config().print_help()
return

Do the processing
integrate = IntegratorFactory.from_parameters(params)
5 sweep = load.sweep(args[0])
rystal = load.crystal(args[1])
&Eﬁ;ections = integrate(sweep, crystal)

ample using the ScriptRunner class

9 diamond

Configuration via phil parameters

 The framework is configured using phil parameters.

 Uses master files located in dials/data to provide
default configuration.

* Also looks, by default, for a ~/.dialsrc file where
users can override the default parameters.

* Rudimentary bash completion for phil parameters
. can be enabled by running the following command:

. libtbx.show build path /dials/completion

) diamond
|

e

Issues that need addressing

* Framework is currently not user-extensible

— Requires modification of factory methods to add new
algorithms and modification of global configuration
files to add new parameters.

e Reflection container has become bloated

— Too much different data being stored in single class
(i.e. not specialized enough).

* Current detector model does not represent
hierarchical detectors well

— Multi=panel detectors are represented as an array of

\zanels, ‘thereby losing information about the
xperimenta)l setup.

diamond
'l

The DIALS

==-PROPOSED DEVELOPMENTS

)‘) . diamond
)

Hierarchical detector model

1D Representation # Add panels to the detector
. . . detector = Detector()
Implemented in C++. Used in the majority of cases. panell = detector.add panel()

Panels are accessed like a standard array. panell.set_name("Panel 1")
panell.set_type("Panel")

Detector

panel2 = detector.add_panel()
panel2.set_name("Panel 2")
Panel 1 Panel 2 Panel N panel2.set_type(“Panel")

Access a panel

p = detector[Q]
Hierarchical Representation

. .. # Create the hierarchy
Implemented in python. Accessed explicitly through root = detector.hierarchy()
a method of the detector. Allows creation of general root.set_name("Detector)
) root.set_type("Detector")

hierarchy of groups and
panels in the form of a tree.
Mainly used in creation

E==and refinement.

Panels must be added

Detector groupl = root.add_group()
groupl.set_name("Group 1")
groupl.set_type("Group")
groupl.add_panel(panell)

group2 = root.add_group()
group2.set_name("Group 2")
group2.set_type("Group")
Panel 1 Panel 1 group2.add_panel(panel2)

diamond

More specific data models

* Current reflection container is messy and bloated.

* Container is often saved with some fields empty and could lead
to confusion (e.g. all reflections from the spot prediction routine
are saved with miller index (O, O, 0)).

* Could split contents into more targeted data models that
provide methods to act on their specific data as shown in the

table below.
Model |Descripton
Prediction Miller indices, rotation angles and detector
coordinates etc

——"""" Observation Centroids and intensities.
i Shoebox Bounding box, pixel values, mask and background.

\\

aeme is currently designing a better, templated, reflection
container.

y diamond

|
o’ t

An extensible plugin framework

 Aim to replace existing factory functions with an
extensible plugin framework

* Features:

— High level interface to major components (e.g. Spot
finding, indexing, refinement and integration)

— Low-level interfaces to provide specific functionality
—.— Automatic registration of extensions

— Automatic discovery of extensions
\Qutomaﬁc extraction of configuration parameters

) diamond
|

High-level interfaces

High-level components (e.g. spot finding,
indexing, refinement and integration) are
implemented according to an iterative
scheme (taken from xia2).

Allows program to make decisions to re-
process data based on the output of its

data processing.

Logic is handles in the toplevel.Interface
class with abstract methods. Instances
override these methods as shown below.

class Integrator(toplevel.Interface):

def prepare(self):
self.extract_shoeboxes()
self.prepared = True

def process(self):
self.compute_background()
self.compute_centroids()
self.compute_intensities()
self.processed = True

16

Finished?

Finish

Prepared?

Prepare

Flow chart of high-level interface (taken from xia2)

diamond

Low-level plugin interfaces

 Aim is to allow algorithms to be written by users that add
specific functionality without modifying the framework
code.

* |nterfaces for algorithms are specified using the “Interface”
meta class. Abstract methods are specified to ensure
extensions implement required functionality.

e Extensions are created by inheriting from the interface they
extend.

 Extensions are instantiated using a factory function
obtained via a global registry of interfaces and extensions.

» The extension’s meta data (including phil parameters) are

s efined inthe class itself and automatically extracted
allowing master phil specs to be generated on the fly.

) diamond
'l

Data model

The registry contains
a list of interfaces

Registry

The registry creates
a factory for the
requested interface

>

The factory creates the
requested extension

Interface2

Each interface contains
a list of its extensions

18

\3

Extension2

@ \

>

diamond

Example

Creating an interface

Interfaces are declared with the “Interface”
metaclass and inherit from “object” to gain
new-style python class features.

Abstract methods must be overridden by the
extension.

Creating an extension

Extensions inherit from their interface.

A name, phil parameters and other meta
data are given to aid configuration.

Abstract methods must be are overridden.

Instantiating an extension

A factory classis created for the interface.
e extension is inska\ntiated by name from

thefactory. N

19

class Integrator(object):
'''Description of interface'''’
__metaclass__ = Interface
name = "integrator"

@abstractmethod
def integrate(self):
pass

class MyIntegrator(Integrator):
""'A description of the extension'''

name = "my_integrator"
phil = '
paraml = ©
.type = int
.help = "a parameter"

def __init__ (self, sweep, crystal, params):
super(MyIntegrator, self)._ init_ ()

def integrate(self):
pass

factory = Registry.factory(Integrator)
integrator = factory.create("my_integrator",

sweep, crystal, params)
integrator.integrate()

diamond

Summary

* (Current status

— Factory methods to configure algorithms with user
selected methods.
— Phil parameters used to configure algorithm
— Helper classes to write command line scripts
* Proposed future developments
__ — New hierarchical detector model

— Improved data models
\\An extensible plugin framework

) diamond
J'|

Interface Meta Class and Factory Class

Interface Class

class Interface(ABCMeta):
def __init_ (self, name, bases, attrs):
super(Interface, self)._ init__ (name, bases, attrs)

if 'name’' not in self.__dict_ :
raise RuntimeError("%s has no member 'name'" % name)

if not hasattr(self, '_ registered_ '):

self. registered__ = True
Registry.add(self)

Factory Class

class Factory(object):

def __init__ (self, plugins):
self. plugins = plugins

e — def create(self, name, *args, **kwargs):
return self. plugins[name](*args, **kwargs)

\
y diamond

Registry Class

@singleton
class Registry:

def

def

def

def

def

def

def

def

def

__init__ (self):
self._interfaces = set()
add(self, iface):
self._interfaces.add(iface)
clear(self):
self._interfaces.clear()
remove(self, iface):
self._interfaces.remove(iface)
__len__(self):
return len(self._interfaces)
__iter__(self):
return iter(self._interfaces)
__contains__(self, iface):
return iface in self._interfaces
extensions(self, cls):
if cls not in self:

raise TypeError('interface %s is not registered' % cls)
stack = list(cls._ subclasses_ ())
while len(stack) > @:

cls = stack.pop()

yield cls

stack.extend(cls.__subclasses__ ())
all_extensions(self):

return dict((iface, list(self.extensions(iface))) for iface in self)

de?‘factory(self, iface):

return Factory(dict((sc.name, sc) for sc in self.extensions(iface)))

22

diamond

Difftoction kfegration for Advonced

Top-level interface class

class Interface(object):
__metaclass__ = ABCMeta

def __init__ (self, maxiter=20):
self. prepared = False
self. processed = False
self. finished = False
self._maxiter = maxiter

def run(self):
countl = 0
while not self.finished:
count2 = ©
while not self.processed:
count3 = 0
while not self.prepared:
self.prepare()
count3 += 1
if count3 >= self._maxiter:
raise RuntimeError('maximum prepare iterations reached")
self.process()
count2 += 1
if count2 >= self._maxiter:
raise RuntimeError('maximum process iterations reached")
self.finish()
countl += 1
. if countl >= self._maxiter:
raise RuntimeError('maximum finish iterations reached")

23

diamond

