Model refinement

David Waterman DIALS-6 / LBNL / May 27 2015

- 1. Centroid refinement
- 2. Parameterisation
- 3. Modularity
- 4. Scan-varying refinement
- 5. Joint multiple experiments
- 6. Multi-tile metrology
- 7. Tools for large jobs

Centroid refinement

Centroid refinement

- Refine parameters that affect *central impacts**
- Parameters that affect *general impacts* (mosaicity, $\Delta\lambda$, ...) are determined by profile modelling

Centroid refinement

 Resembles generalised vector description of MADNES (not by accident)

Bricogne, G (1987) Proc. CCP4 Daresbury Study Weekend

Various authors (1986) *Proc. EEC Cooperative Workshop on Position Sensitive Detector Software I-III*

Parameterisation

- Prediction equation parameterisation:
- Calculate $(X, Y, \phi) \& \left(\frac{\partial X}{\partial p}, \frac{\partial Y}{\partial p}, \frac{\partial \phi}{\partial p}\right)$

for an abstract parameter p

Implement **p** suitable for typical rotation method experiment

Parameterisation

There are 18 parameters in the P 1 case:

Table 1. Default parameterisation in dials.refine for scan-static refinement using a single								
panel detector.								
Model state	Parameters	Action						
	μ_1	rotation about initial $\hat{\mu}_2 \times \hat{\mathbf{s}}_0$						
s ₀	μ_2	rotation about initial $\hat{s}_0 \times \hat{e}$						
	ν	set length of s_0 (wavenumber)						
U	ϕ_1	rotation about laboratory X						
	ϕ_2	rotation about laboratory Y						
	ϕ_3	rotation about laboratory Z						
В	g_{11}^{*}							
	g_{22}^{*}							
	g_{33}^{*}	set metrical matrix elements						
	g_{12}^{*}	set metrical matrix elements						
	g_{13}^{*}							
	g_{23}^{*}							
d	p_0	set distance along initial $\hat{\mathbf{d}}_{\mathbf{f}} \times \hat{\mathbf{d}}_{\mathbf{s}}$						
	t_1	translation along initial $\hat{\mathbf{d}}_{\mathbf{f}}$						
	t_2	translation along initial $\hat{\mathbf{d}}_{\mathbf{s}}$						
	τ_1	rotation about initial $\hat{\mathbf{d}}_{\mathbf{f}} \times \hat{\mathbf{d}}_{\mathbf{s}}$						
	τ_2	rotation about initial $\hat{\mathbf{d}}_{\mathbf{r}}$						
	ameterisation Model state so U B d	$\begin{array}{c c c c c c c c c c c c c c c c c c c $						

Usually v and μ_1 are fixed

Modularity

We approach this as a traditional non-linear least squares problem (no reason not to - it works well for other programs)

- We do global, not local, refinement
- How to model changes to the crystal model over time?

Example

 720° of tetragonal thaumatin data collected at 0.1°/image, 40Hz, 3% transmission at DLS I03

- Scan divided into equal-sized intervals
- Crystal parameterisation split over sample points
- Gaussian smoother, inspired by AIMLESS
- 117 parameters:
 - 6 detector
 - 1 beam
 - 3 crystal orientation × 22 "samples"
 - 2 unit cell parameters × 22 "samples"

Diffraction Integration for Advanced Light Sources

- Global refinement across datasets that share some models
- Typical use cases involve multiple crystals

- Global refinement across datasets that share some models
- Typical use cases involve multiple crystals

- DIALS contains an indexing algorithm that is very successful at identifying multiple lattices*
- This even works when lattices diffract equally well, and only a narrow wedge of data is available
- As additional lattices are found, joint refinement reduces correlations between crystal and detector parameters

*Gildea et al. (2014) Acta Crystallogr. D Biol. Crystallogr. **70**, 2652-66

Cubic polyhedrin crystals, 1° scans

One lattice

5 sweeps (16 lattices)

• We are investigating the use of joint refinement as a preparatory step for *BLEND*

Multi-tile detector metrology

- DECTRIS Pilatus PADs are extremely well-made
- The spatial calibration of panels is measured at the factory
- Correction tables are supplied with the detector
- However, we don't typically use this information for MX
- Nevertheless its effect is detectable in processed data

Example

- 720° of thaumatin data collected at 0.1°/image, 40Hz, 3% transmission at DLS I03
- diffraction to 1.8 Å in the corners

DECTRIS calibration table; X

DECTRIS calibration table; Y

Diffraction Integration for Advanced Light Sources

 $Y_{\rm obs}$ (mm)

CC (prf) vs. resolution

Before correction

After correction

	Overall	InnerShell	OuterShell		0verall	InnerShell	OuterS
resolution limit	150.00	150.00	1.83	Low resolution limit	150.00	150.00	1.83
yh resolution limit	1.79	8.97	1.79	High resolution limit	1.79	8.97	1.79
erge (within I+/I-)	0.057	0.03 <mark>6</mark>	0.147	Rmerge (within I+/I-)	0.057	0.03 <mark>7</mark>	0.154
erge (all I+ and I-)	0.058	0.037	0.1 <mark>69</mark>	Rmerge (all I+ and I-)	0.058	0.037	0.1 <mark>73</mark>
as (within I+/I-)	0.059	0.037	0.19 <mark>0</mark>	Rmeas (within I+/I-)	0.059	0.037	0.19 <mark>8</mark>
eas (all I+ & I-)	0.059	0.038	0.19 <mark>5</mark>	Rmeas (all I+ & I-)	0.059	0.038	0.19 <mark>8</mark>
.m (within I+/I-)	0.013	0.007	0.1 <mark>18</mark>	Rpim (within I+/I-)	0.013	0.007	0.1 <mark>21</mark>
.m (all I+ & I-)	0.009	0.006	0.094	Rpim (all I+ & I-)	0.009	0.006	0.094
erge in top intensity bin	0.036			Rmerge in top intensity bin	0.036		
al number of observations	631 <mark>003</mark>	9164	594	Total number of observations	631 <mark>669</mark>	9225	601
al number unique	1835 <mark>2</mark>	271	147	Total number unique	1835 <mark>5</mark>	271	147
an((I)/sd(I))	48.7	69. <mark>4</mark>	7.5	Mean((I)/sd(I))	48.7	69. <mark>6</mark>	7.5
(I) half-set correlation CC(1/2)	1.000	1.000	0.9 <mark>48</mark>	Mn(I) half-set correlation CC(1/2)	1.000	1.000	0.959
pleteness	74.4	99.9	10.7	Completeness	74.5	99.9	10.7
tiplicity	34.4	3 <mark>3.8</mark>	4.0	Multiplicity	34.4	3 <mark>4.0</mark>	4.1
omalous completeness	73.7	100.0	8.6	Anomalous completeness	73.7	100.0	8.6
omalous multiplicity	18.3	25.0	2.3	Anomalous multiplicity	18.3	25. <mark>3</mark>	2.4
Anom correlation between half-sets	0.05 <mark>4</mark>	0.563	-0.182	DelAnom correlation between half-sets	0.059	0.394	-0.237
-Slope of Anom Normal Probability	1.04 <mark>7</mark>			Mid-Slope of Anom Normal Probability	1.04 <mark>5</mark>		
J-Slope of Anom Normal Probability	1.04 <mark>7</mark>	-	-	Mid-Slope of Anom Normal Probabi	lity	lity 1.04 <mark>5</mark>	lity 1.045 -

- Normal matrix methods scale as $O(mn^2)$
- The defaults of *dials.refine* are not well-suited to large jobs
- Two approaches
 - 1. Use a quasi-Newton method such as L-BFGS
 - 2. Partition the problem: hybrid Refiner
- Note that gradient calculations are expensive, but calculations per reflection are independent
- *dials.refine* optionally allows the use of a memory-efficient L-BFGS engine with gradient calculations in parallel blocks

Calculation of the whole Jacobian

Calculation of the Jacobian in parallel blocks

Calculation of individual dL/dp in parallel (for L-BFGS)

- Only really for the largest jobs
- Each step has a serial component, which is a bottleneck
- The parallel_map overhead may be significant
- But we can now tackle large problems with parallel L-BFGS
- Example results for P6M 60 panel metrology:

Engine	nproc	steps	memory	time
LevMar	1	16	2.9 GB	9m59s
LevMar	7	16	~3.4 GB	10m15s
LBFGScurvs	1	119	1.3 GB	22m13s
LBFGScurvs	7	119	?	10m16s

• Need larger jobs still before this starts to shine, such as multi-crystal joint refinement, e.g. XFEL stills

Acknowledgements

See Graeme's slides!

However, I would like to emphasise special thanks from me to Andrew Leslie and Phil Evans from the MRC LMB, Cambridge.

