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Internals: top-level

Tasks in dials.integate:
Calculate the bounding box parameters from strong reflections

!

Predict the positions of reflections on the images

!

Build reference profiles across all images

!

Integrate the reflections and save output




Internals: top-level

Data dials.integrate

Parameters

Results

Profile Model

Integrated
Reflections
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Internals: types of integrator

3D Integrator
Each integration job reads a block of images and extracts

reflections into 3D shoeboxes for processing.

Flattened 3D Integrator
Each integration job reads a block of images and extracts

3D shoeboxes which are “flattened” for processing.

2D Integrator
Each integration job reads a block of images and extracts

partial reflections into 2D shoeboxes for processing.

Single Frame 2D Integrator
Each integration job reads a single image and extracts

partials reflections into 2D shoeboxes for processing.

Stills Integrator
Same as the single frame 2d integrator but specialized to

accept still experiments rather than rotation experiments.

Integrator




Data

Algorithms

Results

Integrated
Reflections
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Integrator

Experiment list may contain multiple experiments with either sweeps or stills

Y

Manager

-

Results are
accumulated
by the master
class

-

>
Predictions, experiments, profile model,
and background and intensity algorithms
are passed to 1 or more workers which
can be executed in different processes

Result

Result

Each worker
returns its
results to the

Result

master process

-

Y

Workers read a
subset of the images
and perform the
integration on the
reflections on those
images. The image
ranges can overlap.

Images
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Computing reflection shoeboxes

VZON,

[ ‘ sO ’ 1‘

Profile coordinate system

Use the kabsch model of a
normal distribution on the

surface of the Ewald sphere

exp(—&dl172 S20lD72 ) exp(—€l2712 /2¢

e; =81 XSo/1S1 X Syl
e, =81 xXe /|S1 Xeq]
e3 = (51 +50)/IS1 + Syl




Ewald Sphere (not to scale)

Op is calculated from the
spread of angles between the
predicted diffracted beam
vector and the vector for each
strong pixel in the spot

oy is calculated by maximum
likelihood method assuming a
normal distribution of phi
residuals for each strong pixel
in the spot

Predicted phi position ..| Distributed normally with /’ \

standard deviation = sigma_m

phi residual
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Models

e Options to model the background under the
peak as either

— A constant across each image
— A constant across all images

— A plane across each image

— A hyper-plane across all images

 Computed using simple linear least squares




Outliers

e Large valued outliers can cause the background
to be over-estimated

* This then causes the reflection intensity to be
under-estimated

e QOutliers in the background can come from:
— Intensity from neighbouring spots
— Hot pixels
— Zingers
— Unpredicted reflections
— Ice rings
— etc




Outliers
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Low background

4250

41200

Massive Outlier! [*°

4100

4150

3 2326

2327

2328

0
2329

Signal Region

Bad Pixel (flagged

Hot Pixel (2327 counts)

With Hot Pixel

Catastropic over-

Mean | 6.20

estimation!

Variance/Mean | 2237.90

Should be ~1 for

poisson distribution

Without Hot Pixel
Mean | 0.22
Variance/Mean | 0.926
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Simple outlier rejection

outlier.algorithm=nsigma outlier.algorithm=truncated outlier.algorithm=tukey

Q1 - 1.5%IQR

Reject N% of the Reject pixels based
highest and lowest on the interquartile
valued pixels range

Reject pixels N sigma
from the mean




Mosflm-style outlier rejection

ier!
outlier.algorithm=mosflm Outlier!
2 /

Remove N% of Compute the residuals Remove pixels whose
strongest pixels and of all background pixels residuals are greater
compute the to the plane than N sigma from the

background plane plane




XDS-style outlier rejection

. I

Iteratively remove high valued pixels until the distribution of pixel counts
resembles a normal distribution




What effect does outlier rejection
have

* Looked at two datasets
— |04 Bag training. Good data with very few outliers.

— PNAS data. Good data with some serious outliers.
These outliers caused pointless to find the wrong point group when
the data was processed without outlier rejection (pointless has now
been fixed so this error no longer occurs).




4th moment of E

Handling outliers badly

i Truncation seems to do ok

No outlier rejection

simple_mosflm

- — simple_normal

simple_nsigma
/\/\/\/ — simple_null

‘\\72‘\—%/“‘ — simple_truncated

simple_tukey

T

Something is seriously wrong with the other approaches!

3.16 2.24 1.83 1.58 1.41 1.29 1.20 1.12
Resolution

104 bag training data processed with xia2
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4th moment of E

Handling outliers badly

T T T T T T T T

No outlier rejection

A\\ Af—\/\/\/\/\/\ _
RTAZa VA

simple_mosflm
simple_normal
simple_nsigma
simple_null
simple_truncated
simple_tukey

Something is seriously wrong with all the other approaches!

3.16 2.24 1.83 1.58 1.41 1.29 1.20 1.12
Resolution

PNAS data processed with xia2

1.05
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Handling outliers badly

Histograms of background differences vs no outlier rejection for 104 bag training data

12lPoi(';gribution of normalized differences between null and simple_nsigma Ed'asra'bution of normalized differences between null and simple_truncated 3()()P(Sgtribution of normalized differences between null and simple_tukey

.
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(<BG>_null - <BG>_simple_nsigma) / <BG>_null (<BG>_null - <BG>_simple_truncated) / <BG>_null (<BG>_null - <BG>_simple_tukey) / <BG>_null

sDistribution of normalized differences between null and simple_mosfim 1a83isgribution of normalized differences between null and simple_normal

120000 |-
mosflm xds
100000} Sometimes
30000 w0000l removes all non-
zero pixels as
20000] 60000 |- .
outliers!
40000
10000
20000+ I

4
r
0 0 . .
-0.2 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Background is systematically under-estimated




Handling outliers badly

Histograms of background differences vs no outlier rejection for PNAS data

39(}85ribution of normalized differences between null and simple_nsigmi IB)ABBrabution of normalized differences between null and simple_truncated
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Background is systematically under-estimated
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6é%i&gribution of normalized differences between null and simple_normal

50000

xds
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Handling outliers better

Most of our methods assume a normal
distribution of counts — not a good
approximation for data with low background

Instead of rejecting outliers could we use a
robust estimation method?

Most methods also focus on normally distributed
data — leads to under-estimation

Could we use a robust generalized linear model
approach assuming a Poisson distribution2




Is the background Poisson distributed?

* Analysed 9000 blank
images

* Local index of dispersion
computed at each pixel

* Average index of
dispersion computed for
each pixel

500

1000

Background data is Poisson
distributed

Virtual pixels show under-
dispersion due to correlations
with neighbouring pixels

2000

~7.2% of pixels
are affected

2500




Robust GLM algorithm

Eva Cantoni and Elvezio Ronchetti (2001), "Robust Inference for Generalized
Linear Models", Journal of the American Statistical Association, Vol. 96, No.

455
Yi=1TnéEle (rdi )w(xdi Judi /VV(udi) —a(F)]=0
Solve
Ji=ydi —uli i

THSIETH l/‘/gggrsl n residuals

Vi) =u Variance function
w(x)=1 Weights for explanatory variables

pic(r)={Mr, [risec Slgn(ngiﬂéﬁtg for dependant variables
c=1.345 Tuning constant




Handling outliers better (?)

In both cases robust GLM method gives sensible results for the 4t moment of E plots

5 : . ‘ ‘ ‘ 5

41 4
w w
G 31 ] 5 3 1
b — glm_robust S — glm_robust
é — simple_null é /\ /\/\ — simple_null
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0 0 !

3.16 2.24 1.83 1.58 1.41 1.29 3.16 2.24 1.83 1.58 1.41 1.29
Resolut Resolut

104 bag training data PNAS data




Handling outliers better (?)

Histograms of background Histograms of background
differences vs no outlier rejection differences vs no outlier rejection
for 104 bag training data for PNAS data

1200Qd'stribution of normalized differences between null and glm_robust 2500Q&stribution of normalized differences between null and glm_robust
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No systematic difference in the background!
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Are we actually doing anything?

Poigference between estimate and median against index of dispersion

M
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Increasing index of dispersion

(0] ~ ——————

—20

Looks like we’re handling outliers ok




Robust algorithm

* Algorithm requires a good seed value or it
won’t converge — use the median

 Can’t represent a straight line so currently

using constant bac

kground — plan to look at

more sophisticated background if needed

e Current results loo

K promising
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Integration

* Integration algorithm options:
— Summation
— 3D profile fitting (as in XDS)
— 2D profile fitting (future)




3D profile fitting coordinate system

AN

/
/

___\-‘- .

Profile coordinate system

Use Kabsch coordinate
system

Corrects for geometrical
distortions

Makes spots appear to
have taken shortest path
through Ewald sphere
Model assumes a Gaussian
profile in Kabsch
coordinate system

e; =81 XSo/151 X Syl
e, =51 Xe/|S; X eq]
e3 = (851 +S50)/IS1 +Solg




3D profile fitting pixel gridding

€l/e2

elje2

Counts are redistributed to

Ewald sphere grid by
Pixels are mapped to the computing fractional overlap
Ewald sphere of each pixel and Ewald sphere,

grid point




3D profile fitting phi gridding

Frames are transformed to make
reflection appear as if it took the
shortest path through the Ewald
sphere

Grid point ¢ Range

Frame ¢ Range

t

Phi Range Intersection

Counts on each image are distributed
by finding the angular overlap
between each grid point and each
image and integrating over the

intersection e i
DIALS |
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B

uilding reference profiles

Position: (1231, 1263)

* Reference profiles are formed on a grid covering a given angular range
* Grid options include:

e Rectangular grid (as in Mosflm)

e Circular grid (as in XDS)

e Single reflection (currently for multi-panel detectors)

‘ [
i 1]




Building reference profiles

Each strong spot contributes to building the profile at adjacent grid points




Fitting reference profiles

Each reflection is fitted against its closest reference profile




Thanks!
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