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Meet B-lactamase




Considering structural fluctuations opens

up new possibilities

Horn and Shoichet. JMB 2004.
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Molecular dynamics simulations capture
protein fluctuations with atomic
resolution



Markov state models are quantitative
maps of a protein’s conformational space

Bowman et al. Cell Res. 2010.
Noe et al. Curr Opin Struct Biol. 2008.



Coarse-graining Markov models
facilitates understanding
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Hidden allosteric sites should be
detectable on the basis of two signature
structural fluctuations




Pockets are just volumes surrounded by
protein




Pockets are just volumes surrounded by

protein




The known pocket is visible even in the
absence of any ligand



The known pocket opens more widely
than in the ligand-bound state



We also need some form of
communication for an allosteric effect




Correlations between side-chain
rotameric states allows long-distance
communication

Bowman and Geissler. PNAS 2012.
DuBay and Geissler. IMB 200q9.
McClendon et al. JCTC 200g.
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Correlations between side-chain
rotameric states allows long-distance
communication
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Correlations between side-chain
rotameric states allows long-distance
communication
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There are many other potential cryptic
allosteric sites

Bowman and Geissler. PNAS 2012.
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My observations are consistent with
NMR order parameters

Ci(t) = (P(2(0)-2(1)))

Savard and Gagne. Biochemistry 2006.
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My observations are consistent with
NMR order parameters
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My models provide access to the
timescales for side-chain dynamics
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The known pocket also opens, as
oredicted
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We are also testing a newly predicted
pocket
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