Augmenting experiments with *in silico* Markov state models

Gregory R. Bowman
Miller Research Fellow
University of California, Berkeley

$Meet \ \beta\text{-lactamase}$

Considering structural fluctuations opens up new possibilities

Computational approach

Computational approach

Understanding and predicting allostery

?

Computational approach

7

Understanding and predicting allostery

?

Experimental tests

Molecular dynamics simulations capture protein fluctuations with atomic resolution

Markov state models are quantitative maps of a protein's conformational space

Bowman *et al*. Cell Res. 2010. Noe *et al*. Curr Opin Struct Biol. 2008.

Coarse-graining Markov models facilitates understanding

Bowman. JCP 2012. Bowman *et al*. Cell Res. 2010. Noe *et al*. Curr Opin Struct Biol. 2008.

Coarse-graining Markov models facilitates understanding

Bowman. JCP 2012. Bowman *et al*. Cell Res. 2010. Noe *et al*. Curr Opin Struct Biol. 2008.

Coarse-graining Markov models facilitates understanding

Bowman. JCP 2012. Bowman *et al*. Cell Res. 2010. Noe *et al*. Curr Opin Struct Biol. 2008.

Understanding and predicting allostery

Experimental tests

Hidden allosteric sites should be detectable on the basis of two signature structural fluctuations

Pockets are just volumes surrounded by protein

Pockets are just volumes surrounded by protein

The known pocket is visible even in the absence of any ligand

The known pocket opens more widely than in the ligand-bound state

We also need some form of communication for an allosteric effect

$$H$$
 CH_3
 H
 CH_3
 H
 CH_3
 H
 CH_3
 CH_3

$$MI(X, Y) = \sum_{x \in x} \sum_{y \in y} p(x, y) \log \left(\frac{p(x, y)}{p(x)p(y)} \right)$$

Bowman and Geissler. *PNAS* 2012. DuBay and Geissler. JMB 2009. McClendon et al. JCTC 2009.

Bowman and Geissler. *PNAS* 2012. DuBay and Geissler. JMB 2009. McClendon et al. JCTC 2009.

There are many other potential cryptic allosteric sites

Understanding and predicting allostery

?

Experimental tests

My models predict extensive side-chain heterogeneity even in proteins' cores

My models predict extensive side-chain heterogeneity even in proteins' cores

$$C_{\rm I}(t) = \langle P_2(\hat{\mu}(0) \cdot \hat{\mu}(t)) \rangle$$

$$C_{\rm I}(t) = \langle P_2(\hat{\mu}(0) \cdot \hat{\mu}(t)) \rangle$$

$$C_{\rm I}(t) = \langle P_2(\hat{\mu}(0) \cdot \hat{\mu}(t)) \rangle$$

$$C_{\rm I}(t) = \langle P_2(\hat{\mu}(0) \cdot \hat{\mu}(t)) \rangle$$

Savard and Gagne. *Biochemistry* 2006.

My models provide access to the timescales for side-chain dynamics

Closed \rightleftharpoons Open \rightarrow Labeled

Native state thiol-exchange provides a direct test of my predicted pockets

Closed \rightleftharpoons Open \rightarrow Labeled

$$k_{obs} = \frac{k_{op} \times k_{int}}{k_{op} + k_{cl} + k_{int}}$$

Native state thiol-exchange provides a direct test of my predicted pockets

Closed \rightleftharpoons Open \rightarrow Labeled

$$k_{obs} = \frac{k_{op} \times k_{int}}{k_{op} + k_{cl} + k_{int}}$$

$$EX1: k_{cl} << k_{int}$$

$$k_{obs} = k_{op}$$

Native state thiol-exchange provides a direct test of my predicted pockets

Closed \rightleftharpoons Open \rightarrow Labeled

$$k_{obs} = \frac{k_{op} \times k_{int}}{k_{op} + k_{cl} + k_{int}}$$

$$EX1: k_{cl} << k_{int}$$

$$k_{obs} = k_{op}$$

$$EX2: k_{cl} >> k_{int}$$

$$k_{obs} = \frac{k_{op} \times k_{int}}{k_{cl}} = K_{op} \times k_{int}$$

Rate labeling: 6x10⁻⁴ s⁻¹

Rate labeling: 6x10⁻⁴ s⁻¹

Rate unfolding $< 2.5 \times 10^{-5} \text{ s}^{-1}$

We are also testing a newly predicted pocket

We are also testing a newly predicted pocket

Outline

Thanks!

Brendan Maguire

Eric Bolin

Susan Marqusee

Phillip Geissler

Outline

