

CCP4 interest in diffraction integration software Harvard Medical School

David Waterman

CCP4

July 2012

Acknowledgements

Funding: CCP4 (DGW), EU FP7 BioStruct-X & Diamond Light Source for the rest

- Colleagues: Graeme Winter, Gwyndaf Evans and Alun Ashton at Diamond
 - Thinking: Andrew Leslie, Phil Evans, Gleb Bourenkov, Garib Murshudov

Materials: Andrew Leslie for slides on Mosflm

Collaboration: Nick Sauter's group (NIH grant R01GM095887 for synchrotron data processing)

- Data reduction with CCP4 now
- The Mosflm legacy
- \blacksquare Beyond MosfIm \rightarrow DIALS
- Error estimation: personal interest in a new framework for integration software

Data reduction with CCP4 now Mosflm/iMosflm

	Integration			
Images	Images: 1-29			Abort Process
Indexing	Parameter Beam x Beam y Distance Y-scale	Value F 119.51 [120.02 [249.50 [1.0003 [Deg.	Twist 4
Strategy	Tilt Twist Tangential offset	0.02 0.11 0.11	0.08-	5 7 8
25 ell Refinement	Radial offset RMS residual RMS res. (central)	-0.040 [0.043 0.031		
Integration	RMS res. (weighted) Parameter	0.540	x Deg.	Block
History	(x) (y) (z) a b c c α β	-0.04 -0.11 0.02 58.43 58.43 156.01 90.00 90.00 90.00		
	Y Mosaicity Parameter	1.024 [-0.15 -0.15	
	Parameter Reflections Reflections Reflections Reflections Reflections	Puii Part 0.00 10 0.00 10 0.00 4 0.00 4 0.00 4 0 1	a) 30 20- 28 80 10- 33 0- 33 0- (00)>	print part 6 10 10 10 10 10 10 10 10 10 10

Data reduction with CCP4 now

Mosflm/iMosflm

- Mosflm is a very successful package
- Widely available (through CCP4)
- Typical user experience is via the excellent GUI, iMosflm
- This encourages inspection of the images, to identify
 - poor spot shapes
 - anisotropic diffraction
 - multiple lattices
 - very high mosaicity (increase threshold in indexing)
 - incorrect direct beam position (no. 1 cause of indexing failure)
 - shadows
 - ice spots or rings

The Mosflm legacy

- The software is 3 decades old, derived from the Cambridge MOSCO system (Nyborg and Wonacott), developed further at Imperial College and then at the LMB
- Written in FORTRAN 5 for a Data General Nova 3/12 computer with 32 kWords of memory and a 10 Mbyte disk drive. Handswitches provided control of program operation at run time.

 The limited memory dictated that processing involved running a series of separate programs, further divided into overlays, with communication provided by external files

The Mosflm legacy

The drivers for development were technological advances, and to solve specific problems

- Arrival of VAX computers (virtual memory!)
- Image plates
- More "automated" processing for higher throughput
- CCD detectors
- Improve user-friendliness (GUIs) and software "intelligence"
- Fine φ slicing
- Pilatus detectors

The Mosflm legacy

Problems

- The implementation has been overly influenced by hardware limitations
- Development has always been an adaptation of the original specification without changing the basic framework
- Particular issues include:
 - The instrumental correction factor for intensity error estimates
 - A non-general coordinate system (the "Cambridge frame")
 - A confusing change of coordinate system in refinement after autoindexing, for use of REFIX code ¹
 - Crystal orientation parameters "mopping up" unmodelled obliquity of the angle between beam and rotation axis
 - Unphysical parameters such as detector TILT and TWIST
 - Three separate parameter refinement routines
 - Strictly 2D integration

¹though this is invisible to the user

- Development of Mosflm continues. Where it can adapt, it will
- Current developments:
 - better handling of Pilatus data (big improvement recently)
 - multiple lattices
 - parallel processing
 - generalised goniometry

Beyond MosfIm \rightarrow DIALS

New sofware is desired to provide:

- A physically realistic model of the experiment
- 3D parameterised profile fitting
- Rapid processing fully utilising modern computer hardware, keeping pace with high data acquisition rates
- Challenging cases, e.g. deconvolution of overlaps, handling of highly mosaic crystals
- A modular, extensible architecture, suitable for implementation within pipelines as well as interactively

personal interest in a new framework for integration software

One particular deficiency of current integration programs is poor modelling of the error of integrated intensities

- Non-Poisson statistics of CCD detectors
- Correlations between pixels
- Problems with learned profiles

Non-Poisson detector response

- Real detectors have a DQE < 1, which implies Poisson statistics underestimate the true errors
- It is possible to derive a better estimate for a simulated CCD detector based on the physical processes involved in detection

Non uniform correlation patterns

The distortion correction of CCD detectors introduces a Moiré pattern visible on flat field scattering images

Non uniform correlation patterns

This leaves a detectable signature in profile fitting error estimates

Problems with learned profiles

- Pixellating detectors do not sample a signal, they average in bins (C. Nave)
- The appearance of histograms depends on the anchor points

- Rather than learned profiles we'd prefer to use a parameterised model to construct profiles
- This addresses the problem of profile anchor points
- It also provides a way to account for errors properly even in the presence of correlations

The end

Spatial noise

with James Holton

Position-dependent detector response causes a significant systematic error in the measured intensity

position

Spatial noise

with James Holton

The spatial period of variation appears to be on the scale of a pixel. Could the cause be phosphor inhomogeneities?

mean intensity at each position

Y position (pixels)