
PDB format considerations

• Fixed-format PDB files
– Advantages

• Easy & fast parsing, manual editing, visual inspect ion

– Problem
• Does not scale to larger structures

• Alternatives
– Diverse approaches

• mmCIF (but no breakthrough after 20+ years)
• XML (extremely verbose, slow parsing, not human-rea dable)
• Wide-PDB (http://biomol.dowling.edu/WPDB/)

– Problem common to all approaches
• Incompatible with old format -> huge investment in time
• Nobody in a position to dictate that everybody spen ds

time+money to quickly move the entire community over to
something new

Format evolution adopted in PHENIX

• We need a working format that scales to larger
structures
– Not to be confused with deposition format accepted by

wwpdb.org members

• Where are the most pressing problems?
– More than 100k atoms (27 structures in PDB, Oct 2007)
– Only 62 “official” chainid characters

• Automatic model building needs more (George Sheldri ck)
– More than 10k residues in one chain

• Maximally backward compatible extensions
– Most users will not see a change
– Visible changes only for

• very large structures
• or if researchers intentionally use the extensions

– e.g. for more meaningful chainids

chainid AB

• Use ATOM columns 21-22 for two-character chainid
– Suggested by George Sheldrick (many chain fragments)
– Standard is just column 22
– Thorough examination of PDB: two-character chainid

compatible with all PDB records in which they appea r
DBREF SEQADV SEQRES MODRES HET HELIX SHEET TURN SSBOND

LINK CISPEP SITE ATOM SIGATM ANISOU SIGUIJ TER HETATM

• Backward compatibility
– Writing: chainid right-adjusted, e.g. chainid A writt en as “ A”
– Reading: only strip leading spaces!
ATOM 369 PEAK PEAK 1 61.114 12.134 8.619 1.00 20.00 PEAK

ATOM 504 SITE SITE 2 67.707 2.505 14.951 1.00 20.00 SITE

**

– Preserving trailing spaces maximizes backward compa tibility
• Reading-writing cycle preserves intended meaning

serial numbers = strings

• Atom serial numbers: 5 columns
– referenced in CONECT records

• Residue sequence numbers: 4 columns
– referenced in several other records (e.g. LINK)

• Basic idea for maximum flexibility
– Simply preserve strings
– Convert from/to integers “just in time”
– Conversion only needed for arithmetic

• resseq 10:20 implies integer ordinal for each str ing
• resseq + 1

“hybrid” serial numbers

• Assignment of integer ordinals to strings
• “Hybrid-36” maximizes compatibility

– Strings that look like integers: no change (base-10)
• -999 to 9999

– Only if we run out of colums: switch to upper-case base-36
0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ

– First character is an upper-case letter
– Examples: A000, A001, A002, …, ZZZZ

– Only if upper-case exhausted: switch to lower-case base-36
– First character is a lower-case letter
– Examples: a000 , a001 , a002 , …, zzzz

– Mixed-case symbols intentionally avoided to minimiz e
potential for confusion

– Atom serial numbers: 87,440,031
– Residue sequence numbers: 2,436,111

Practical advice

Golden Rule:
Preserve as much as possible, as long as possible.

– Preserve chainid trailing spaces
– Preserve serial number strings
– Convert to/from integers only if necessary

• Hide base-10 integers from users ; convert back to strings for ouput!
The PDB format dictates that we show strings. To av oid confusion, show
the same symbol in all contexts. Don’t confuse user s with a mix of base-
10 symbols in one context and hybrid-36 symbols in another.

Use our open-source hybrid-36 implementations
– Python
– Java
– C/C++
– Fortran
– Drop-in replacement of built-in string<->integer co nversions
– NO dependencies other than compiler or interpreter
– NO strings attached

Resources

Open-source hybrid-36 implementations:
http://cci.lbl.gov/hybrid_36/

Fast C++ PDB parser with Python interface (iotbx.pdb.input)
http://cci.lbl.gov/publications/download/iucrcompcomm_nov2006.pdf

Contact:
Ralf W. Grosse-Kunstleve
rwgk@cci.lbl.gov

September/October 2007

