The rotation matrix, W, used in lattice_symmetry.h

The counterclockwise rotation of a vector r through a counterclockwise angle @ about the normalized

axis tis treated geometrically, e.g., by Goldstein (1980). Eq. 4-92 in that text gives the formula for the
rotated vector,

r'=rcos(D+f(f-r)[1—cos(D]+(fxr)sinCD. (1)
Note that Eq. 1 is for a rotating vector in a fixed laboratory frame. We want to express the rotation in the

form of a matrix operator W (Fischer & Koch, 1996), such that r' =Wr. We expand the formula in (3x3)
matrix notation and rearrange:
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Eq. 2 is identical to one given in Boisen & Gibbs (1990). This can then be specialized for 2-fold rotations
by taking ®=180°, giving the matrix operator
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It is stressed that W and T are expressed in Cartesian laboratory coordinates rather than crystallographic
coordinates.
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