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1. Introduction

Protein crystal diffraction data from X-ray free-
electron lasers (XFELs) pose difficult challenges
to conventional data reduction software. In a
typical XFEL experiment, short pulses of
photons tens of femtoseconds long containing
1012 photons/pulse interact serially with
thousands of individual crystals, each
producing a single pattern before the intense
light destroys the crystal. These diffraction
patterns represent ‘still’ shots and must be
treated differently than rotation datasets
collected using a goniometer. For example, with
only one shot, refining the crystal orientation
around the x- and y-axes of rotation orthogonal
to the beam becomes difficult, as the rotation
around these axes does not affect the locations
of reflections, but only which reflections are in
the diffracting condition. Furthermore, without
a way of measuring the rocking curve directly
by transitioning reflections through the Ewald
sphere during a crystal rotation, it is difficult to
produce estimates of mosaicity and thus
predict which weak reflections will be in the
diffracting condition. For these and other
reasons described elsewhere, we have
implemented the package cctbx.xfel, based on
cctbx (Grosse-Kunstleve et al 2002), which
includes specializations of known indexing and
refinement algorithms specific for the stills case
(Sauter et al. 2013, Hattne et al. 2014).

Further challenges unrelated to the physics of
crystallography are encountered when
processing XFEL data. First, the short pulse
length makes photon-counting detectors
unsuited for recording XFEL data. Integrating
detectors such as those used with charged-

Computational Crystallography Newsletter (2016). 7, 32-53

coupled devices (CCDs) are more
appropriate, but in order to handle the high
pulse rate typical of XFELs (120 Hz at the
Linac Coherent Light Source (LCLS)), new
detectors were created, such as the Cornell-
SLAC Pixel Array Detector (CSPAD) (Hart et
al. 2012). The CSPAD is composed of 32
separate sensors, the positions of which are
not precisely known.

Finally, diffraction data collected at 120 Hz
must be reduced using large computing
clusters with memory, file I/O and network
capacity capable of keeping pace with the
experiment in a timely manner, so that a
data reduction team can provide live
feedback to beam line operators and
scientists, allowing them to change sample
measurement conditions as needed.

This article illustrates features and
processing patterns of a typical XFEL
experiment and provides commands for
running cctbx.xfel in conjunction with the
new software for reducing data from
difficult systems, DIALS (Diffraction
Integration for Advanced Light Sources)
(Waterman et al. 2013). DIALS is built on the
cctbx toolkit and takes advantage of many of
its features, including image file reading
from a variety of formats, crystal symmetry
libraries and minimization engines. Given a
collection of diffraction images, DIALS
produces a series of models of the
experiment, describing the detector, beam
and crystal, and, as appropriate, goniometer
and scan (Parkhurst et al 2014). It also
implements new indexing, refinement and
integration algorithms, continuing in the
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‘toolbox’ tradition of open source and object-
oriented programming set in place by cctbx.

1.1. System overview

The ability to do serial X-ray crystallography
has relied on the convergence of several
critical technologies, such as the X-ray source
and sample injection systems. Reduction of
XFEL diffraction data requires further
technologies including a) a detector capable of
recording XFEL pulses at speeds matching the
source, b) parallel computing infrastructure,
c) new and adapted file formats for data
storage and d) data reduction software. Here,
we provide a brief overview of these
technologies.

1.2. The detector

XFEL pulses challenge detector technology.
The CSPAD detector is capable of integrating
high signals from the ultra-bright XFEL
source, while operating at 120 Hz. Two
CSPADs are installed at the CXI end-station at
LCLS; another is installed at the XPP end-
station. The detector comprises 32 sensors,
each consisting of 2 Application-Specific
Integrated Circuits (ASICs) 194x185 pixels in
dimension. The sensors are arranged in 4
quadrants of 8 sensors each. The CSPADs at
CXI have their quadrants each on a diagonal
rail that allows tuning the size of the central
aperture through which the transmitted beam
must pass, while the quadrants of the CSPAD
at XPP are in a fixed arrangement. Each
detector is regularly upgraded and improved
and sensor positions vary as a consequence,
although these are measured using an optical
microscope. Indexing, predicting spot
locations using a crystal orientation matrix
and integrating reflection intensities require
precise knowledge of the locations of these
sensors in three-dimensional space (Hattne et
al. 2014). For this reason, a portion of this
article describes the calibration and
refinement of the sensor or tile metrology
using a reference dataset.

Each pixel in the detector can be configured to
a low or high gain setting. The low gain setting

Computational Crystallography Newsletter (2016). 7, 32-53

has a full well capacity of 3000 photons, while
the high gain setting saturates about seven
times as quickly but has a higher sensitivity
(Hart et al. 2012). This feature allows the user
to specify, for example, a circular gain mask
that sets low resolution pixels to low gain
mode to avoid saturation of intense low
resolution reflections while keeping high
resolution pixels in high gain mode to capture
weak diffraction data near the detector limits.

Other detectors in use at XFEL sources for
protein crystals include the octal sensor
detector at SACLA (Kameshima et al. 2014), a
Rayonix MX 170 HS detector at XPP (Chollet et
al. 2015) and a MAR 325 CCD detector, also at
XPP at LCLS, occasionally brought in from
SSRL for use with fixed target experiments
(Cohen et al. 2014). Each of these detectors
has its own set of tradeoffs and cctbx.xfel has
been used to process data from all of them.

1.3. Parallel computing

Recording at 120 Hz yields 72000 2.2
megapixel CSPAD images in a typical 10
minute LCLS run. Processing this volume of
data  without a parallel computing
environment quickly becomes impractical.
The clustering environment at LCLS is ideal.
Hundreds of nodes can be harnessed with 12 -
16 computer cores each to greatly accelerate
indexing and integration. The program
cxi.mpi_submit, a component of cctbx.xfel,
provides an interface for submitting
processing jobs to the LCLS cluster.

Additionally, we have collaborated with
NERSC (National Energy Research Scientific
Computing center) to transfer the data
streams from the CSPAD detectors to the
NERSC clustering systems for processing
(Kern et al. 2014). NESRC is utilized for some
of the largest data reduction problems world
wide, including climate and astrophysics
simulations and is ideal for efficient, parallel
reduction of data from serial crystallographic
experiments.
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1.4. Data reduction software

Diffraction data recorded on CSPADs at LCLS
is streamed by dedicated Data Acquisition
Systems (DAQs) to container files in XTC
format. The programmatic interface to
interact with these files at LCLS is psana
(Damiani et al. 2016) cctbx.xfel was originally
designed to use the older pyana interface
(Sauter et al. 2013, Hattne et al. 2014) and has
transitioned to psana while maintaining
backward compatibility.

psana uses a calibration store to read frames
and apply pixel corrections such as dark
current subtraction and common mode
correction and it is designed with
computational parallelization in mind. As each
image is independent, multiple computer
cores can process images in parallel. cctbx.xfel
interfaces with psana to read XTC streams,
parse the LCLS metrology file that describes
the layout of the CSPAD and load pixel data
for each image. Next, cctbx.xfel uses DIALS or
LABELIT to create detector and beam models,
find spots, index the reflections, refine the

experimental model and integrate the
reflection intensities. The user specifies
processing  parameters in  cctbx-style

parameter files (PHIL files, see below) and
passes the parameter file to cctbx.xfel, which
calls psana and submits the job to the queuing
system. Specific details are described below
and in online tutorials at
http://cci.lbl.gov/xfel.

cctbx.xfel is the XFEL data reduction package
developed by the Computational
Crystallographic Initiative at LBNL and is
installed for all users at LCLS.

1.4.1. cctbx.xfel indexing, refinement and
integration back ends (LABELIT and DIALS)
cctbx.xfel was originally implemented using
1D Fourier indexing algorithms (Steller et al.
1997), as made available in LABELIT (Sauter
et al. 2004). This LABELIT backend was
expanded in the cctbx framework to include
stills-specific algorithms, such as additional

targets for refining crystal orientation and
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refining mosaic estimates needed to
determine which reflections are in the
diffracting condition (Sauter et al 2013,
Hattne et al. 2014, Sauter et al. 2014, Sauter
2015). These procedures have been
implemented and expanded in DIALS, taking
advantage of the diffraction models and
refinement engine made available in that
platform (Waterman et al. 2016).

For example, the DIALS indexer provides
three algorithms for determining initial sets of
basis vectors during indexing: fft3d, fft1d and
real space grid search. fftld is an
implementation of the 1D FFT algorithms
described above, with the addition that the
user can markedly increase the success rate of
indexing by providing a target unit cell and
space group based on prior knowledge
(Hattne et al 2014). fft3d is an
implementation of 3D FFT methods (Bricogne
1986, Campbell 1998) and isn’t relevant for
stills. The real space grid search approach was
described recently as a simplification of
Fourier methods when unit cell dimensions
are already available (Gildea et al. 2014). In
the case of unknown unit cell parameters, real
space grid search is not available and fft1ld
remains the best choice for stills. However,
after an initial indexing test, the unit cells
determined by fftld from many still
diffraction patterns can be hierarchically
clustered (Zeldin et al. 2015) and a consensus
unit cell for the sample can be determined.
There are choices of lattice distance functions
to be used in clustering. The most effective is
the G° space distance function (Andrews &
Bernstein 2014, McGill et al. 2014). Then, the
consensus cell can be used as a target for
indexing using real space grid search. Notably,
in a recent experiment with lysozyme crystals,
we found that real space grid search with a
well-determined set of unit cell parameters
can find up to 21% more lattices than fftld.
However, a different experiment found that
fftld gave dramatically more results than
real_space_grid_search. We encourage users
to try both options to determine which yields
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better results according to a chosen figure of
merit and we invite users to contact the
authors to share their experiences.

DIALS also provides a mechanism for
parameterizing experimental models that
lends itself naturally to building complex
refinement target functions (Waterman et al.
2016). The complete experiment is described
through a series of models: the crystal (unit
cell and orientation), the beam, the detector,
the goniometer axis and orientation and the
scan oscillation range and increment. While
the goniometer and scan models are not
applicable for stills, the crystal, beam and
detector models can be refined against
measured data according to stills-specific
targets (Sauter et al 2014). Importantly,
individual parameters such as the wavelength
or the detector distance, tilt or orientation can
easily be fixed, ie locked into place,
depending on the use case.

The DIALS backend for cctbx.xfel includes a
derivation of the DIALS indexer optimized for
stills and includes all of the stills-specific
algorithms  mentioned above, taking
advantage of the open-source and object-
oriented nature of the cctbx framework for
which DIALS, LABELIT and cctbx.xfel are all
derived.

1.4.2. XTC and CSPAD CBF formats

The LCLS data acquisition systems stream
terabytes of data to container files in XTC
format. XTC is a linear, sequential-access file
format, where individual events can be
recorded rapidly to the file system as they are
collected. ‘Derived’ metadata such as detector
position and percent beam attenuation are
not provided directly; instead, motor

positions and the status of LCLS instrument
parameters are recorded. It is up to end user
software to transform this information into
the parameters needed to describe the
crystallographic experiment. psana abstracts
many of these transformations. For instance,
cctbx.xfel interfaces with psana to couple the
raw pixel data from the 64 ASICs in each
CSPAD detector event in the XTC stream with
transformed metadata to create files in
Crystallographic Binary Format (CBF) that
contain the pixel data and also completely
describe the experiment in their headers,
using  standards established by the
International Union of Crystallography (IUCr)
(Bernstein & Hammersley 2006). This format
has been described in detail previously
(Brewster et al. 2014). Briefly, the geometry
of the CSPAD detector is recorded as a series
of basis transformations that move an
observer from the sample interaction point
(the crystal) to the detector, then to each of 4
quadrants, then to each of 32 sensors, then to
each of 64 ASICs. All transformations are
relative to a parent frame, which allows the
positions of groups of objects (such as sensors
in a quadrant) to be refined as a unit by only
refining the vectors defining the parent
object's frame of reference.

1.4.3. PHIL format

Python Hierarchical Interface Language
(PHIL) is the syntax for specifying parameters
in cctbx (Grosse-Kunstleve et al. 2005, Grosse-
Kunstleve et al. 2006, Bourhis et al. 2007).
Phenix users will know it as .eff format
(effective parameter file). This short example
is used to configure the DIALS spotfinder
(details explained below):

spotfinder {
filter.min spot size=2
threshold.xds.gain=25

threshold.xds.global threshold=100
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PHIL format uses curly braces to establish
parameter scopes among programs and uses
name-value pairs to specify parameters. Here,
spotfinding parameters such as minimum
spot size, gain estimates and global
background thresholds are provided inside
the spotfinder scope.

1.4.4. Intermediate DIALS formats

DIALS utilizes two intermediate file formats to
store experimental models and reflection
information prior to merging and scaling data
and writing MTZ format files for subsequent
structure solution and refinement.

1.4.4.1. JSON format

DIALS represents crystallographic
experiments as a series of physical models,
including detector, beam, goniometer and
scan, through the Diffraction Experiment
Toolbox library (dxtbx) included in cctbx
(Parkhurst et al. 2014). For stills, acquired by
serial femtosecond crystallography, no

goniometer or scan objects are used. For each
component in the hierarchical detector, the
model includes the positional vectors dy, dr
and ds. dyp points from the parent component’s
origin to the child’s origin, while dr and ds
define orthogonal fast and slow vectors that,
when combined with the normal vector (df x
ds), specify a basis frame for the component.
The ‘leaves’ of the detector model, e.g. the
ASICs for the CSPAD, also contain information
to convert from pixel to millimeter
coordinates, such as pixel size, taking into
account a parallax correction by including
ASIC thickness and material composition. The
beam model includes the beam vector (sp) and
the wavelength of incident photons. All of
these metadata are serialized using JavaScript
Object Notation (JSON) in .json files.

The JSON files are organized thusly (here,
each indentation level represents a JSON
entry):

ExperimentList
Experimentl
BeamID
DetectorID
CrystallID
Experiment?2
Beams
Beaml

<beam properties i.e. wavelength, direction>

Beam?2
Detectors
Detectorl
<detector properties i.e.
Detector?
Crystals
Crystall

<crystal properties i.e.
Crystal?2

do,

unit cell,

df, ds vectors>

orientation>
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At the top, an experiment list defines a set of
experiments each containing a beam, detector
and crystal model, identified using numerical
IDs. Then, the set of detector, crystal and
beam models referenced by the experiments
are listed. An individual experiment always
contains exactly one detector, beam and
crystal model. A single detector model can be
shared by every experiment, for example if
there were multiple crystals in a single shot.
Alternatively, each  experiment could
reference a different detector model, perhaps
taking account shot-to-shot variability in
detector position due to a fluctuating injection
system or from other jitter. Likewise, two
experiments could each share a crystal model,
perhaps having different beam models in the
case of a two-color experiment, or perhaps
having different detector models from two
different  detectors. This organization
provides a flexible means of organizing a
variety of possible experiment types and has
already been used to jointly refine multiple
lattices simultaneously from multiple crystals
exposed during a single rotation series (Gildea
etal 2014, Waterman et al. 2016).

1.4.4.2. Reflection table pickles

Spots found by spotfinding, indexed by
indexing, or integrated during integration are
recorded in reflection tables, where each spot
is one row and the columns contain data such
as Miller index, observed or predicted location
relative to the panel origin in mm, summed
intensity and variance, etc. These tables are
serialized into python pickle files.

Both JSON experiment files and reflection
table pickle files can be inspected with the
command:

dials.show filename

Note that commands and parameters
presented here will use the above formatting.
Program names are shown in bold. Generally,
additional documentation is available for each
program listed with -h, --help, or -c (for
configuration). Use -e to specify ‘expert level’
if desired (10 shows all parameters, or use 0,
1 or 2 for fewer parameters). Use -a 2 to show
documentation for each parameter.

2. cctbx.xfel operational overview at LCLS

It has been our experience that analyzing data
collected using serial crystallography (SX)
typically requires three distinct processing
stages labeled here calibration, discovery
and batch (figure 1). Calibration refers to
refining the geometry of the experiment, but
also includes some pre-processing steps, such
as creating dark and light averages, bad pixel
masks and gain masks. Using these inputs,
initial parameters are derived that describe
the experiment, such as detector distance,
quadrant and sensor layout, any beam
correction parameters needed and so forth.
During discovery, the user examines
individual diffraction patterns and searches
for appropriate parameters for data
reduction, including hitfinding parameters if
used, spotfinding parameters, target unit cell
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dimensions and crystal symmetry and an
optimal merging strategy. Finally, when
optimal software configuration is established,
the user enters batch processing mode,
endeavoring to maximize the parallel
computing options offered and, during live
experiments, attempting to provide
constructive feedback to beam line operators
in as close to real-time as possible. After the
experiment, the user will often need to
reprocess the runs collected in batch mode.
During batch processing, the user will
continue to refine processing parameters as
the results are evaluated, perhaps even
revising initial metrology estimates. Thus the
three stages are somewhat fluid as feedback
from later stages may call for repeating earlier
stages.
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Figure 1: Operational overview at LCLS. The user will typically go through stages of processing: calibration
(green), where detector geometry is optimized and pixel data is corrected and masked, discovery (blue),
where the user determines sample-specific spotfinding, indexing, and integration parameters, and batch
(orange), where large amounts of data are integrated prior to merging, either concurrent with the
experiment for fast-feedback or after the experiment is completed. Several important data reduction
tasks are shown in flowchart form, colored by the appropriate stage. Averaging and indexing are both
useful for calibration and discovery, so they are shown with both colors.

LCLS organizes its data according to end-
station name, experiment name and run
number, under the global directory
/reg/d/psdm. Thus, if a user was assigned
experiment ID cxi84914, their data would be
at /reg/d/psdm/cxi/cxi84914. The XTC
streams will be in an xtc directory at that
location, the calibration store, including for
example geometry files and pedestals, will be
in a directory named calib and the user will be
able to store processing results temporarily in
a scratch directory at that location, or more

3. Averaging CSPAD data

An important part of discovery and
calibration involves averaging images
together to get a sense of the behavior of the
data. cxi.mpi_average produces three images
from a run: an average image, a standard
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permanently in a designated results directory
named res. The magnitude of the data being
collected — over 100 terabytes from a five-
day experiment is not unusual — leads to a
paradigm where the user never takes their
raw data home. Instead, they reduce their
data to integrated, merged and scaled
intensities in MTZ format using the LCLS
clustering system, then transfer that much
smaller file to their home computer for
downstream analysis.

deviation image and a composite maximum
image. In these images, every pixel is the
average, standard deviation, or maximum of
all pixels in that register over an entire run.
Averages from a dark run, where the detector
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is not exposed to X-rays, or from a light run,
where the detector is exposed to X-rays,
possibly in the presence of sample, are useful
for several reasons. Light and dark images can
be used to determine which pixels are not
trusted. Inactive and non-bonded pixels, as
well as hypersensitive pixels and any pixels
shadowed by a beam stop should be masked
out. The light images and the composite
maximum in particular, also serve as a virtual,
dark-subtracted powder pattern that can be
used to inspect the data for diffraction. The
light maximum should also flag obvious errors
in metrology, because rings will be non-
continuous if the quadrants are misaligned.
Intensity values from the corners of the light
average or maximum are also useful to
estimate background when determining
initial estimates of thresholds for spot-finding
and integration (see below).

3.1. Example averaging commands
Use this command to average the CSPAD data:

for i in "seq 95 114°; do bsub -n
12 -g psanag -o avg rS$Si.log
mpirun cxi.mpi_average -x
cxi1d9114 -r $i -a
CxiDs2.0:Cspad.0 -d 572 -v —-g
6.85; done

cxi.mpi average -x cxid9114 -r
95 -a CxiDs2.0:Cspad.0 -d 572
-v —g 6.85

The parameters are:

-x: experiment name

-r: run number

-a: detector address

-d: detz_offset (defined below)
-v: verbose output

-g: gain ratio

The gain ratio is a constant multiplier for all
low-gain pixels to be scaled to be at the same
level as the high-gain pixels. When operating
the CSPAD in mixed-gain mode, this ratio is
needed to apply this correction. The value of
6.85 used here is not exact, but it is sufficient
for this purpose.

The user may find it useful to average all the
available data using the queuing system and
to use multiple cores to reduce processing
time. This can be done using a single
command:
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The program bsub is used to submit jobs to
the LCLS queuing system. The parameters are:

-n: number of processors
-q: queue name
-o: log file name

mpirun is used to enable inter-process
communication so the averaging program can
dispatch images to different computing cores
and gather the results when complete. For
more information, please see documentation
from LCLS:

https://confluence.slac.stanford.edu/display/
PCDS/Submitting+Batch+Jobs

3.2. Using averages to create an untrusted
pixel mask

cctbx.xfel uses three images created during
averaging to create a mask for the CSPAD
detector. From the average image of a dark
run, pixels with intensities < 0 are considered
dead, while intensities > 2000 are flagged as
hypersensitive. From the standard deviation
of a dark run, pixels with intensities < 0 are
considered dead and intensities = 10 are too
uncertain and noisy. From the composite
maximum from a lighted run (ie an
experimental run), pixels with intensities <
300 are considered non-bonded or in shadow.
The presence of diffraction is not needed for
the third image, but also will not interfere.
The default of 300 here is unique among the
numbers listed in that it will likely vary with
the sample's background while the other
defaults do not usually need to be changed. To
tune this value, the user can carefully examine
the corners of the lighted maximum
projection and choose a value lower than the
ADU values displayed. Also note that there is
no cutoff on the high end of the maximum
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projection image specified in the mask, as that
is defined as the saturation value for the
detector.

Here is an example command. Note that we
have chosen 50 instead of 300 for the
parameter maxproj-min after examining the
data:

The output (specified with -0) is a detector
mask usable by DIALS. It can be displayed
using the image viewer, where masked out
pixels are shown in red:

dials.image viewer cxid9114 max-
r0096.cbf mask=mask.pickle

cxi.make dials mask --maxproj-
min=50 -o mask.pickle
cx1d9114 avg-r0089.cbf
cx1d9114 stddev-r0089.cbf
cx1d9114 max-r0096.cbf

4. Calibrating the CSPAD detector

As described above, the CSPAD consists of 32
2x1 sensors whose position in space must be
refined. Before the user arrives at the XPP or
CXI end-station, the beam line operator will
have used an optical microscope to measure
within each quadrant where the 2x1 sensors
are located relative to one another and will
have deployed these measurements as a
starting metrology. While each of the 8
sensors within a quadrant will be well
positioned relative to each other, the overall
position of each quadrant relevant to the
beam is usually not well determined. Initial
quadrant positioning can be done using
virtual powder rings from the average of
many individual crystals, as described below.
Average images with strong powder rings
allow the user to determine the relative
placement of each quadrant by aligning them
such that the rings are contiguous. With these
positions, initial indexing of a subset of data
can produce measured and predicted Bragg
reflection positions from which tiles are
refined, minimizing the difference between
observed and predicted spot locations from
indexed diffraction data. The user re-indexes
the data and re-refines the detector metrology
until convergence is reached. It is
recommended that high resolution, highly
reproducible diffraction data from a reference
set such as lysozyme or thermolysin be
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collected for calibration and that the detector
is positioned such that diffraction reaches its
corners.

4.1. Manual quadrant calibration

Typically the best powder rings come from
the composite maximum (example: the file
cxid9114_max-r0113.cbf will have been
generated from the above averaging
command). To manually align the quadrant
positions, either use calibman (see LCLS
documentation) or
use cctbx.image_viewer with the composite
maximum. Under actions, click on 'Show
quadrant calibration’ and then wuse the
spinners to align the powder rings. One may
find the ring tool or the unit cell tool, also
under the Actions menu, to be useful visual
aids during this process. When done, click
'Save current metrology' to save the changes
to a .def file, which is a CBF header.

4.2. Automatic quadrant calibration
using cctbx.xfel

If a quadrant is properly positioned relative to
the beam center, the pixel values for a strong
powder pattern will be highly correlated after
rotating the quadrant 45 degrees around the
beam center. cspad.quadrants_cbf performs
a grid search of XY offsets for each quadrant,
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searching for the position with the highest rotational autocorrelation. It then writes out a new
CBF file with the adjusted header:

cspad.quadrants_cbf cxid9114 max-r0105.cbf

Specify the '-p' parameter to enable plots of the grid search results for each quadrant, in
addition to reporting correlation coefficients (CCs) for each quadrant. The aligned image can be
inspected with the image viewer:

cctbx.image viewer cxid9114 max-r0105 cc.cbf

It is possible that a maximum of all the runs would have more contiguous and brighter rings,
leading to higher CC values. This can be done quickly using the previously generated per-run
composite maxima:

cxi.cspad average * max*.cbf -m all max.cbf

Once a satisfactory maximum has been obtained, the quadrants tool can be called:

cspad.quadrants_cbf all max.cbf

If the CC values are higher than when using individual run maxima, then this is a better
approach for finding a good set of quadrant positions prior to initial indexing attempts.

4.3. Deploying new quadrant positions

Before the new quadrant positions can be used for indexing, the new layout needs to be
converted to SLAC's metrology file format. Use this command if the quadrants were aligned
manually using cctbx.image_viewer:

cxi.cbfheader2slaccalib cbf header=quadrants.def

Or this command if the quadrants were aligned using cspad.quadrants_cbf:

cxi.cbfheader2slaccalib cbf header=all max cc.cbf

The resultant file, 0-end.data, needs to be copied to the calibration store for the experiment.
Typically, this will be in a directory in this form:

/reg/d/psdm/cxi/cxid9114/calib/CsPad::CalibVl/CxiDs2.0:Cspad.0/geom
etry

There will already be a 0-end.data file in this folder. We recommend renaming this file to 0-
end.data.v0, copying the new 0-end.data to this folder under the name 0-end.data.v1, then soft-
linking 0-end.data.v1 to 0-end.data. This will maintain a version history, as metrology is refined
for this experiment.

4.4. Metrology Versioning
The user may find it useful to keep track of the improvement in metrology estimates using a
versioning system. In this article, we version the metrology using the conventions in table 1.
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Table 1: Metrology versioning

Metrology

. Description
version

Initial metrology deployed by beam line operators. The tile

Version 0 (v0)

positions are measured using an optical microscope, but, as the
quadrants can move independently, they are not correctly aligned

in relation to each other or to the beam center.

After collecting some data, virtual powder rings can be seen after

Version 1 (v1)

averaging the events in a run. Quadrants are aligned by eye or

automatically using cspad.quadrants_cbf.

Version 2 (v2) produce metrology v2.

Version 3 (v3)

After indexing the images using v1, the tile positions are refined to

After re-indexing the images using v2, the tile positions are re-
refined to produce metrology v3.

And so forth until convergence.

4.5. Detector distance and detz_offset

Each individual event in the XTC stream
includes motor position settings for the
detector (figure 2). The detector’s position is
measured from the back of the rail on which
the CSPAD detectors at CXI moves to the
detector itself. Call this distance detz.
Naturally, the desired distance needed for

detector’s current position to the sample
interaction region. For this reason, during
processing it is necessary to supply an offset
(detz_offset) from the sample interaction
region to the back of the detector rail, a value
that is constant over the course of a given
experiment but changes between experiments
when new injectors are substituted in and out

crystallographic  analysis is from the of the sample chamber, a common occurrence.
+d -detz
. i
beam 4:’} | \
_________ detector rail
‘ J
+detz offset

Figure 2: Schematic of the detz_offset parameter. The CSPAD at the LCLS CXI endstation can be translated
on a detector rail shown in black. The position of the CSPAD along this rail, detz, is determined from motor
positions and recorded in the XTC stream for each event. As the sample injection system varies between
users, the distance between the crystal and the back of the detector rail, the detz_offset, needs to be
measured or experimentally refined. Then, the detector distance d can be determined for each event from
the difference between the detz_offset and the detz parameter.
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cctbx.xfel will compute the actual detector
distance for each frame using the difference
between detz_offset and detz. Detz_offset is
available from the beam line operators but
needs to be refined. See (Hattne et al. 2014),
where detz_offset is refined by screening a
range of values and finding the detz_offset
that indexes the greatest number of images
and see (Nass et al. 2016), where the detector
distance is optimized by minimizing the
standard deviation of the distribution of unit
cell dimensions from P1 indexing trials at
different distances. Importantly, eliminating
multi-modal unit cell dimension distributions
by using slightly different detector distances
on a day-by day or even run-by-run basis can
increase the final quality of the data.

4.6. Initial indexing

During indexing, the user parameterizes
cctbx.xfel with settings regarding spotfinding,
indexing, refinement and integration. An
initial set of parameters needs to be
established before indexing can be reliable.

These parameters will be recorded in a PHIL
file.

4.7. Spotfinding

The most important parameter for the DIALS
spotfinding algorithm is the gain, meaning the
number of analog-to-digital units (ADU) per
incident photons on a pixel, recorded on that
pixel. The program cctbx.xfel.xtc_dump can
be used to dump CSPAD CBFs from an XTC
stream to determine the flat gain value from
many images at once. Here we use run 113, as
its average image revealed the presence of
strong diffraction:

Then the program dials.estimate_gain can be
run on these files which will estimate a flat
gain for each image gain based on the
statistical distribution of reordered pixel
values:

dials.estimate gain
cspad image.cbf

The final set of parameters for spotfinding is:

spotfinder {
filter.min spot size=2
threshold.xds.gain=25
threshold.xds.global threshold=100
}

cctbx.xfel.xtc_dump
dispatch.max events=100
input.experiment=cxid9114
input.address=CxiDs2.0:Cspad.0
input.run num=113
format.file format=cbf
format.cbf.detz offset=572
input.override energy=8950

The min_spot_size parameter specifies the
minimum number of high-intensity pixels that
must be present to classify the pixels as
belonging to a spot. A value of 2 is appropriate
for the CSPAD, which can record very small
reflections. The global_threshold parameter
should not generally be needed for PAD data,
but, here in mixed high/low gain mode, the
flat gain estimate of 25 is not reliable for the
entire detector. Because of this, we arbitrarily
state that all pixels less than 100 ADU are
background for spotfinding (but not for
integrating).

The program dials.image_viewer includes a
mechanism for displaying which pixels will be
included as signal for a given set of
spotfinding parameters. This is a highly useful
tool for estimating these parameters.

4.8. Indexing

Initial parameters for the DIALS indexer
include a target unit cell, an indexing method
and a resolution cutoff:

indexing {
known symmetry {
space group = P43212
unit cell = 78.9 78.9 38.1 90 90
90
}
method=real space grid search
refinement protocol.d min start=1.7
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As lysozyme is well known, it is straightforward to assign known symmetry. In unknown cases,
this can be left blank and the fft1d method can be used in place of real_space_grid_search. The
resolution cutoff here is chosen to include the whole detector, but this may not be appropriate
if the unit cell is not well known or if the resolution shown in the average composite is lower.

4.9. Refinement

The DIALS refiner is used to optimize the experimental parameters after indexing. Refinement
is performed after each indexing solution is determined for each diffraction pattern. Here, we
change some settings in the parameterization block for the refiner:

refinement {
parameterisation {
beam.fix=all
detector.fix list=Dist,Taul
auto_reduction {
action=fix
min nref per parameter=1
}
crystal {
unit cell {
restraints {
tie to target {
values=78.9,78.9,38.1,90,90,90
sigmas=1,1,1,0,0,0

}

As these data were collected using seeded pulses instead of self-amplified stimulated emission
(SASE) XFEL pulses, should have a constant energy, so we fix the beam parameters in place
such that they are not refined. We also fix the detector distance (dist) and the rotation of the
detector around the z axis. For SASE data, the user can consider allowing the detector distance
to refine for each image by setting detector.fix_list equal to Taul only. Regardless, either the
beam model or the detector distance (if not both) should be fixed, as they are co-dependent.

When the refiner determines that there are too few observations to reliably refine a model, its
behavior is determined by the auto_reduction parameters. Some models, such as the beam
model, have few parameters, while others, such as the detector or crystal models, have many. If
the number of reflections needed per parameter is set to zero, all parameters for all models will
be refined regardless of how many reflections are available. Otherwise, if too few reflections
are available to refine a given model, then one of three actions is taken: 1) Fail: refinement does
not proceed and processing stops for this image. 2) Fix: the parameters for this model are fixed
in place and not refined, but the reflections associated with it will still be used for other models
if possible. 3) Remove: the model and all reflections associated with it will be removed from
refinement; when refining a single still shot, this effectively means refinement will not occur for
any of the models.

For stills, we find there are often not enough reflections to refine all the parameters (cell
orientation, detector position, etc.) using the DIALS default minimum value of 5 reflections per
parameter, because the default is optimized for a rotation experiment using a goniometer in
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which there are many more reflections than
there are in a single still shot. Here we set the
minimum to 1, but 3 may also be a reasonable
alternative, especially if the unit cell is larger.
Poorly determined parameters will increase
the root mean square deviation (RMSD) of the
differences between observed and predicted
reflections, which would affect the quality of
the refined tile positions during metrology
refinement later. However, during tile
refinement, an image will be rejected if its
overall positional RMSD is too high, so a
minimum reflection count per parameter of 1
may be sufficient.

Finally, we restrain the unit cell parameters.
The tie_to_target option uses a known set of
cell dimensions and a set of weights for each
dimension specified wusing the sigma
parameter. Here, a sigma of 1 for the cell
dimensions allows for some variation during
refinement and is used for the edge lengths.
For this orthorhombic space group we
remove the restraint for the angles by setting
those sigmas to zero.

4.10. Integration

The DIALS integrator uses the stills-specific
mosaic  parameters estimated during
integrating to predict which reflections are in
the diffracting condition (Sauter et al. 2014).
Additional parameters are shown here:

the Pilatus series from Dectris, which have a
very low background. We have found this is
not appropriate for the CSPAD, so we choose a
“simple” linear 2d algorithm which estimates
a gradient from nearby pixels for each
reflection after fitting the background to a
plane (Leslie 1999).

Lastly, even though we disable profile
modeling, we instruct the profile modeler to
accept the experiment even if the number of
reflections is low (which is typically true for
stills).

4.11. XTC and CSPAD specific parameters
cctbx.xfel.xtc_process is the program used to
read the XTC streams, create CBF images in
memory and then invoke the DIALS
procedures. It needs to be parameterized in
ways specific to the LCLS experiment:

integration ({
profile.fitting=False
background ({

algorithm = simple
simple {
model.algorithm = linear2d
outlier.algorithm = plane
}
}
}
profile {
gaussian_rs {
min spots.overall = 0

}
}

input {
address=CxiDs2.0:Cspad.0
}
format {
file format=cbf
cbf {
detz offset=572.3938
invalid pixel mask=mask.pickle
gain mask value=6.85
override energy=8950
common mode.algorithm=custom
common mode.custom parameterization=5,50
}
}
border mask {
border=1
}

We disable profile fitting for stills. For the
background, the DIALS default algorithm, glm,
is optimized for counting detectors such as
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The address string identifies which CSPAD
should be used to read data from in the XTC
streams and can be obtained from the beam
line operator. The format section specifies
experiment-specific parameters to be written
into the CBF file headers or to be used to
correct the pixel data before adding it to the
CBF main body. Here is where we specify the
untrusted pixel mask created previously. The
detz_offset parameter was chosen by indexing
the data while letting the z axis refine, then
creating a histogram of the distance values
found for each image. Generally, however, the
beamine operator’s estimate is a good initial
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point to index enough images. A test of several
different detz_offset values 1is another
approach (Hattne et al. 2014).

For these seeded pulses the energy is known,
so we override the energy value found for
each shot in the XTC stream. For SASE data,
the XTC stream contains an estimate of the
overall energy for the pulse and should be
used, meaning that the user should leave this
field blank. Finally, LCLS provides a variety of
common mode correction algorithms (see
https://confluence.slac.stanford.edu/display/
PSDM/Common+mode+correction+algorithm
s). The common mode is a per shot, per sensor
small offset on the order of 10 ADU that
occurs due to changes in potentials during
readout of the sensors. Determining it for
protein crystallography, which generally has a
high background due to solvent scattering, is
difficult. If common_mode.algorithm is left
unspecified in the PHIL file, no correction will
be applied. The user may otherwise specify
‘default’ for this option, in which case the
current default LCLS corrections will be

applied. Currently this is algorithm 1, a pixel
histogramming method applicable to weak
signal and likely not applicable to protein
crystallography =~ with  strong  solvent
scattering. The user can also specify ‘custom’
and pick an algorithm from the algorithms
described at the above link. Algorithm 5,
selected in this PHIL file, uses non-bonded
pixels, i.e. pixels not bump bonded to the
electronics in a given ASIC and specifies a
maximum correction applied to each pixel of
50 ADU. Currently, we can offer no advice as
to which is best as it is a matter of active
research. Generally, we have been processing
with no correction, leaving the common_mode
parameters blank.

Finally, we specify a border mask of 1 pixel for
each of the 64 tiles, because the wider edge
pixels of the CSPAD are not on the same ADU
scale as the rest of the pixels in the ASIC.

4.12. Final PHIL file for initial indexing
Putting it all together, the initial PHIL file for
indexing will look like this:

input {
address=CxiDs2.0:Cspad.0
}
format {
file format=cbf
cbf {
detz offset=572.3938
invalid pixel mask=mask.pickle
gain mask value=6.85
override energy=8950
common mode.algorithm=custom
common mode.custom parameteriz
}
}
border mask {
border=1
}
spotfinder {
filter.min spot size=2
threshold.xds.gain=25

threshold.xds.global threshold=100

ation=5, 50
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4.13. Indexing commands

Indexing in cctbx.xfel is typically done in a
series of trials. Our first trial will be trial O,
using metrology v1 (initial metrology from
beam line operators, with quadrants
corrected using one of the above techniques).
The program cxi.mpi_submit will submit the
indexing command to the queuing system.
LCLS’s LSF queue is supported and SGE and
custom queuing commands are also available.
Please contact the authors for advice on
running the software on any queuing systems
not yet supported.

We generally organize our work into
numbered ‘trials’, where each trial represents
an experimental set of parameters. The
program cxi.mpi_submit creates a directory
for the trial, copies all config and PHIL files as
backups and submits the processing job to the
LCLS cluster. For example, to do the initial
indexing trial for this data, we use the
command:

for i in "seq 95 114°; do
cxi.mpi submit
input.experiment=cxid9114
output.output dir=/reg/d/psdm/
cxi/cxid9114/ftc/brewster/dial
S mp.nproc=36 mp.queue=psanaqg
output.split logs=True
input.dispatcher=cctbx.xfel.xt
Cc _process input.target= LD91-
lyso-t000.phil input.trial=0
input.run num=$i

dispatch.integrate=False; done

This for loop in bash submits runs 95 through
114, inclusive, for processing. The experiment
name is specified to allow psana to find the
XTC streams with the data. In the output
directory, a run directory for each run will be
created and under that a three-digit trial
directory (named 000 for trial 0) will be
created. Logs will be saved to a stdout
directory in the trial directory. Here, we use
split logs, which means that in addition to the
main log file, each of the 36 processors
requested here will write to a separate log file
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so as not to interleave all the output from all
the processors. The queue to use is specified
as psanaq, the public queue available at LCLS.
Other queues are available, as described here:
https://confluence.slac.stanford.edu/display/
PCDS/Submitting+Batch+Jobs. The dispatcher
refers to which XTC processing program to
run; cctbx.xfel.xtc_process invokes the
DIALS processing pipeline. The other program
available, cxi.xtc_process, invokes the
LABELIT backend as described elsewhere
(Hattne et al 2014). The PHIL file for
processing is specified as a target. Finally, to
save time during initial indexing and
metrology refinement (the discovery phase),
we use dispatch.integrate=False to skip the
integration step.

After the job completes, indexing results will
be available in the results folder for each run,
under trial 000 in a folder named out. For
each indexed image a CBF file will be created.
In addition, the files refined_experiments.json
and indexed.pickle will be created, containing
information about the indexing solution and
the list of indexed reflections, respectively.
dials.show is useful for displaying some
summary information about the contents of
these files and dials.image_viewer can be
invoked with a CBF file and an indexed.pickle
file to visualize the indexed reflection
positions overlaid on the image data.

cctbx.xfel.xtc_process provides user control
over which steps in the spotfinding, indexing
and integration are executed. For example, the
user could dump all images with strong
reflections to CBF whether or not they
indexed using dispatch.dump_strong=True.
Use the -c (configuration) parameter to show
the full set of options available.

4.14. Refinement of tile positions

After initial indexing results are obtained, the
program cspad.cbf_metrology is used to
refine the tile positions of the CSPAD detector.
This program aggregates many individual
indexing results to do a joint refinement of
many crystal models and a single detector
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model using the differences between the
observed spot locations and predicted spot
locations as a target function. In brief, the
steps taken are:

Use dials.combine_experiments to
concatenate a number of indexing results into
a single combined_experiments.json file and a
single combined_reflections.pickle file. During
this step, each crystal model from each
experiment is retained separately, while the
detector positions are averaged together to
create a single detector model.

* Filter the set of indexing solutions, rejecting
images with an RMSD high enough to be
considered an outlier using Tukey’s rule of
thumb.

* Refine the detector as a whole, including
rotation and tilt, using dials.refine.

* Filter individual images again by RMSD.

* Refine each quadrant separately using
dials.refine.

* Filter individual images again by RMSD.

* Refine each 2x1 sensor separately using
dials.refine.

* Convert the final refined_experiments.json file
into a CBF header.

* Convert the CBF header to SLAC format, ready
to deploy as a new metrology file.

Use a command like this one to refine the

metrology, assuming the results folder is in a

directory at the same level as the current

folder:

results. The PHIL file provided parameterizes
the dials.refine steps. Here we only specify a
light restraint to the target unit cell as
described above:

refinement ({
parameterisation {
crystal {
unit cell {
restraints {
tie to target {
values=78.9,78.9,38.1,90,90,90
sigmas=1,1,1,0,0,0
apply to all=True

cspad.cbf metrology tag=t000 2k
../results/r0*/000/out
n_ subset=2000
split dataset=True cxd9114-
refine.phil

The tag is prepended to every output file
name. n_subset selects a random group of
images for refinement from the input set of
folders. split_dataset instructs the program to
perform the refinement twice with a different
random subset of 2000 each time. This is
useful to verify the precision of the
refinement, meaning how likely it is for the
refinement to produce the same detector
metrology given a different set of indexing
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Depending on the quality of the calibration
dataset, the user may decide to forgo filtering
individual images with high RMSD out of the
dataset. Use rmsd_filter.enable=False to do
this. An additional parameter can specify
which set of reflections to use during
metrology refinement. reflections=indexed is
the default and specifies using only indexed,
strong reflections. Refinement can also be
done against integrated reflections. During
indexing, dispatch.reindex_strong can be used
to re-index the bright reflections found during
spotfinding that weren’t matched during
indexing. Then, during metrology refinement,
reflections=reindexed_strong can be used to
include more strong reflections than just the
ones from initial indexing. This provides more
data to use during refinement without adding
weak reflections from integration, which may
have poorly determined centroids.

Finally, the wuser can use two different
methods of selecting the subset of data to use
for refinement. The default method picks
randomly from the available images to create
a dataset with which to refine metrology.
Alternatively, the wuser can  specify
n_subset_method=n_refl to instead pick the
subset with the greatest number of reflections
per image to increase the likelihood of
measuring diffraction to the corners of the
detector.

49



ARTICLES I

The final output file, 0-end.data.t000_2k_1 in
this example, is ready to use as a new version
of the metrology (here, version 3, or v3).
Deploy it to the calibration folder as described
above.

4.15. Evaluating metrology convergence
After deploying the metrology, it is
recommended that the user repeat indexing
and metrology refinement until tile positions
converge, meaning until the tile positions are
no longer changing significantly and the
quality of the positional RMSDs is no longer
improving. Two programs are available to
assist in evaluating this:
cspad.detector_shifts and
cspad.detector_statistics.

cspad.detector_shifts can be used to see
changes in panel positions during refinement:

This output reveals that the detector as a
whole (level 0) moved 6 microns during
refinement in the XY plane (orthogonal to the
beam). Each quadrant moved 78+/-53
microns and each sensor moved 14.5 + 11.4
microns. As the quadrants are the least well
determined, it is reasonable their positions
should move the most. The full output
contains more information, such as z offsets
and rotations.

Use cspad.detector_statistics to evaluate the
precision of refinement. This program
compares the two independent refinements
performed by cspad.cbf metrology when
split_dataset=True.

cspad.detector_statistics
tag=t000 2k

cspad.detector_shifts
t000 2k 1 filtered experiments
.Jjson
t000 2k 1 filtered reflections
.pickle
t000 2k 1 filtered experiments
_level2.json
t000 2k 1 filtered reflections
_level2.pickle

This test compares the unrefined metrology
(first two files) with the results after sensor
refinement (level 2). The CSPAD has four
levels of metrology available to refine, level 0
(detector as a whole), level 1 (4 quadrants),
level 2 (32 2x1 sensors) and level 3 (64
individual ASICs). As the ASICs are physically
connected, level 3 need not be refined. Some
example output could look like this:

Hierarchy Delta XY Delta XY

Level Sigma
(microns) (microns)

0 6.2 0.0
1 78.1 53.2
2 14.5 11.4
3 0.0 0.0
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This program produces a lot of output,
comparing tile positions at each level of the
detector hierarchy. We will focus on a few of
these statistics.

Each refinement job, two in this -case,
produces one measurement of the position of
any given CSPAD tile. The F offset sigma and S
offset sigma values report weighted standard
deviations of the two measurements of the
each sensor's fast (F) or slow (S) coordinate.
These values are reported for each 2x1 sensor
and after several rounds of indexing and
refinement using monochromatic data from
this experiment, the overall weighted
averages of the fast and slow offset sigmas
were 1.6 and 1.7 pum, respectively, indicating
the overall precision of this refinement was
around 1 pm. This is much smaller than the
pixel size of the CSPAD, 110 um.

Also reported is the observational RMSD of
the differences between observed and
predicted reflection positions, which for this
experiment was 38.3 um for the first split
dataset and 37.5 um for the second. In all
cases, weighted averages or standard
deviations are computed using the number of
reflections observed as the weight.
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5. Batch integration, scaling and merging of XFEL data

After metrology refinement is complete, the
user can process data in batch mode using
cxi.mpi_submit as described above, using
dispatch.integrate=True. During integration,
in addition to experimentjson and
integrated.pickle files in DIALS format, the
integration results are also stored in cctbx.xfel
integration files using a convention of int-0-

<timestamp>.pickle. The files are the direct
inputs to scaling and merging programs
available through cctbx.xfel, namely cxi.merge
(Sauter 2015) and prime.postrefine
(Uervirojnangkoorn et al. 2015). Directions
for the use of these programs are provided on
the cctbx.xfel wiki (http://cci.lbl.gov/xfel).

6. Processing serial crystallographic data from other sources

The main program used for processing data
presented here, cctbx.xfel.xtc_process, is an
interface between the LCLS system psana
used for writing and reading XTC streams, the
libraries in cctbx.xfel needed for creating and
using CSPAD CBEF files and the stills-specific
algorithms implemented in DIALS for
indexing, refinement and integration. Users
collecting serial crystallographic data at
synchrotron  sources on new, high
performance detectors such as the Eiger by
Dectris have the option of using these same

algorithms for still shots with the program
dials.stills_process. This program accepts a
PHIL file as described above, with the
exception that the format section is omitted,
as the file headers are used directly to
assemble the appropriate detector, beam and
crystal models. The program can be used on a
cluster using mpirun if the mp.method
parameter is set to mpi. For further detail, use
the -c parameter as described above to see
available options.

7. Future directions and software availability

cctbx.xfel is installed for all users at LCLS in /reg/g/cctbx. Instructions for setting up the
appropriate environment for its use are available at http://cci.lbl.gov/xfel. cctbx.xfel bundled
with DIALS is completely open source and is distributed through SourceForge and Git (see
installation instructions for standalone packages at http://dials.github.io).

A graphical user interface (GUI) for processing XFEL data at LCLS using cctbx.xfel has been
developed. Users interested in helping beta test the interface are invited to contact the authors.
Further, example data useful for practicing the commands presented here are available on
request.
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