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Rotation photographs can be readily indexed if enough

candidate Bragg spots are identified to properly sample the

reciprocal lattice. However, while automatic indexing algo-

rithms are widely used for macromolecular data processing,

they can produce incorrect results in special situations where a

subset of Bragg spots is systematically overlooked. This is a

potential outcome in cases where a noncrystallographic trans-

lational symmetry operator closely mimics an exact crystallo-

graphic translation. In these cases, a visual inspection of the

diffraction image will reveal alternating strong and weak

reflections. However, reliable detection of the weak-intensity

reflections by software requires a systematic search for a

diffraction signal targeted at specific reciprocal-space loca-

tions calculated a priori by considering all possible pseudo-

translations. Care must be exercised to distinguish between

true lattice diffraction and spurious signals contributed by

neighboring overlapping Bragg spots, non-Bragg diffraction

and noise. Such procedures have been implemented within the

autoindexing program LABELIT and applied to known cases

from publicly available data sets. Routine use of this type of

signal search adds only a few seconds to the typical run time

for autoindexing. The program can be downloaded from

http://cci.lbl.gov/labelit.
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1. Introduction

The ability to process a large number of rotation data sets

sequentially is a prerequisite for many large-scale projects,

including the screening of crystal-growth conditions for

optimal diffraction (Page et al., 2005), the discovery of

protein–ligand complexes and the acquisition of multi-crystal

data sets involving radiation-sensitive samples. Synchrotron

beamlines can facilitate high-throughput work by deploying

software packages such as DNA (Leslie et al., 2002) or Web-

Ice (González et al., 2008), which present the initial diffraction

results in summary form. Under these systems, the underlying

computations are automatically delegated to established

crystallography programs. This represents an efficiency gain

for the end user, who is freed from the burden of managing

the data-processing steps separately for each new sample.

However, it requires that routine calculations such as auto-

indexing (the determination of the basis vectors that span the

crystal lattice) work flawlessly despite the diversity present in

real experimental samples.

To deduce the crystal lattice, many autoindexing algorithms

(e.g. Kabsch, 1988, 1993; Steller et al., 1997; Sauter et al., 2004)

take the brightest candidate Bragg spots as a starting point.

An implicit assumption is that no matter which bright spots

are chosen, the subset is representative of the lattice as a
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whole. This is valid for most macromolecular crystals, as bright

spots in each resolution shell are generally distributed

randomly; in particular, given some simple prior assumptions

about the placement of atoms in the unit cell (Read, 2001), the

probability density of observing an acentric reflection with

intensity I is

PðIÞ ¼ ��1 expð�I=�Þ; ð1Þ
where � is the mean reflection intensity of the appropriate

resolution shell (Wilson, 1949; French &Wilson, 1978). Higher

values of � are more common in shells of lower resolution.

One exception to this general probability distribution

occurs if the structure contains pseudotranslational symmetry

(i.e. noncrystallographic translational symmetry such that the

translational symmetry operator is close to a rational fraction

of the cell length; Hauptman & Karle, 1953, 1959; Gramlich,

1984). This causes the reflections to divide into a subgroup of

strong intensities and coset(s) of weak intensities. Data of this

nature are by no means unusual. Chook et al. (1998), for

example, report two crystal structures where the average weak

intensity is about 10% of the average strong intensity when

considering the lowest resolution shells, in which the disparity

between alternating strong and weak intensities is most pro-

nounced. Unfortunately, the normal autoindexing strategy is

not robust for these cases, as it is not possible to guarantee that

a randomly chosen subset of bright reflections will include

members of the weak coset. If the chosen reflections are

concentrated at low resolution, are few in number and/or if the

coset is intrinsically weak, the strong-intensity set dominates.

Autoindexing will then produce an (incorrect) model lattice

missing the coset altogether, in which the noncrystallographic

translation is taken to be an exact crystallographic operation.

This problem would disappear if one could just lower the

intensity threshold used to include Bragg spot observations for

indexing. Regrettably this does not work consistently in

practice, as it is necessary to maintain a high enough cutoff to

remove artifacts that would otherwise confuse the indexing

algorithm. Instead, we introduce an automated procedure that

is meant to emulate the empirical process reported by various

groups (e.g. Warkentin et al., 2005). Firstly, the data set is

autoindexed normally to produce a presumptive basis set that

may or may not span the coset of weak reflections, if any is

present. The raw data are then re-examined to ascertain

whether there is additional Bragg diffraction in between

positions on the modelled lattice. If so,

the presumptive basis vectors are

transformed accordingly, producing a

new lattice model spanning both the

strong and the weak reflections. When

implemented within the autoindexing

program LABELIT (Sauter et al., 2004),

this approach takes only a few extra

seconds of computational time and

identifies cases of pseudotranslation

with high fidelity. The procedure has the

additional benefit of being able to

identify the presence of pseudo-trans-

lational symmetry at the stage of autoindexing, in contrast to

Patterson methods, which rely on the availability of reason-

ably complete data (Zwart et al., 2005).

2. Mathematical background

Autoindexing gives a complete description of the presumptive

reciprocal lattice L and its relation to the laboratory coordi-

nate system in the form of an orientation matrix

A ¼
ax ay az
bx by bz
cx cy cz

0
@

1
A ¼ ðA�Þ�1 ¼

a�x b�x c�x
a�y b�y c�y
a�z b�z c�z

0
@

1
A

�1

; ð2Þ

where the matrix components are the orthonormal projections

of the unit-cell basis vectors a, b, c (and reciprocal-cell basis

vectors a*, b*, c*) that have been converted to reduced form

(Grosse-Kunstleve et al., 2004). The presence of pseudo-

translation, associated with alternating weak Bragg spots that

are not on the lattice L, leads to the identification of the true

reciprocal lattice L0 given by the orientation matrix

A0 ¼ MTA; ðA�Þ0 ¼ A�ðMTÞ�1; ð3Þ
where M is a transformation matrix whose integer determi-

nant n is the ratio of unit-cell volumes, n = |A0|/|A|. Using the

terminology of Rutherford (2006), we call L0 a sublattice of L
and n the index of the sublattice. Although there are an infi-

nite number of index-n sublattices of L, a key result from

group theory (Billiet & Rolley Le Coz, 1980) is that the

number of distinct sublattices is finite and small. Unit-cell

doubling, for example, leads to only seven unique sublattices:

those with doubled a, b or c basis vectors, those with pseudo

A-, B- or C-face centering and one with pseudo body-

centering. Table 1 shows the upper-triangular matrices M and

transformed basis vectors associated with each of these cases.

Borrowing nomenclature from group theory, this paper uses

the term coset to refer to the weak reflections on the sublattice

that are not part of the main lattice L. Reciprocal-lattice

vectors form an Abelian group under the operation of vector

addition, with L being a subgroup of L0. The coset decom-

position of L0 with respect to L,

L0 ¼ Lþ g2Lþ . . .þ gnL; ð4Þ
identifies cosets (or subsets) g2L, . . . , gnL obtained by adding

the vectors g2, . . . , gn to each vector of L. For example, the
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Table 1
Transformations giving the sublattices of index n = 2 (unit-cell doubling).

Type of unit-cell
doubling

Transformation
matrix M

Sublattice basis
a0, b0, c0

Miller indices h0 of
weak reflections in
the sublattice

Peak position in
the sublattice
Patterson function

Doubling of a (200 010 001) 2a, b, c h 0 odd 1
2, 0, 0

Doubling of b (100 020 001) a, 2b, c k 0 odd 0, 12, 0
Doubling of c (100 010 002) a, b, 2c l 0 odd 0, 0, 12
C-face centering (210 010 001) 2a, b + a, c h 0 + k 0 odd 1

2,
1
2, 0

B-face centering (201 010 001) 2a, b, c + a h 0 + l 0 odd 1
2, 0,

1
2

A-face centering (100 021 001) a, 2b, c + b k 0 + l 0 odd 0, 12,
1
2

Body centering (211 010 001) 2a, b + a, c + a h 0 + k 0 + l 0 odd 1
2,

1
2,

1
2
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doubling of unit-cell vector a leads to a single coset with

g2 = 1
2a* and its tripling leads to cosets with g2 = 1/3a* and

g3 = 2/3a*.

3. Computational approach

It is straightforward to enumerate all distinct transformations

M that give sublattices of index n (Billiet & Rolley Le Coz,

1980; Zwart et al., 2006). Having performed this, the following

algorithm is used to detect sublattices in the raw data. After

autoindexing to determineA, perform a loop over all matrices

M to give A0. For each A0 and for each rotation photograph

used in autoindexing (LABELIT normally uses two 1� rota-

tions positioned 90� apart in ’), predict the positions of all

reflections on the detector out to a certain resolution limit. For

each reflection with Miller index h0, back-transform the Miller

index into the original (L) reciprocal basis,

h ¼ h0ðMTÞ�1: ð5Þ
Miller indices are then divided into two sets. Those with all-

integer h components ({hinteger}) are spanned by the main

lattice L, while those containing a fractional h component

({hfractional, M}) are associated only with the sublattice L0.
Focusing exclusively on this latter coset, the raw data are

investigated to see if there is (weak) Bragg scattering at these

predicted spot positions. If so, it is concluded that the correct

lattice is L0. After the loop over all matrices M is finished, the

final orientation matrix (A0 if a sublattice has been discovered,

otherwise A) is analyzed to determine the metric symmetry as

previously described (Sauter et al., 2004, 2006).

This approach completely avoids the original dilemma of

lowering the spot-picking threshold sufficiently to sample the

sublattice, which carries the risk of introducing artifacts.

Instead, we target the sublattice search at specific detector

positions and thus can detect weak signals down to very low

signal-to-noise levels. Fig. 1 shows the detection of a sublattice

with n = 2.

Since the signal of interest is inherently of low intensity, it is

necessary to carefully eliminate phenomena that could be

falsely interpreted as Bragg scattering from a sublattice coset.

Such decoy signals are treated in xx3.1–3.3.

3.1. Rejection of intensity outliers

One potential pitfall arises from the undesirable presence of

outlying pixel intensities in the raw data caused by ice crystals,

zingers or other processes (Bourgeois, 1999). An example is

seen in Fig. 2(a), in which a small group of saturated CCD
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Figure 1
Detail of a 1� rotation photograph taken from the data set used for
solving PDB entry 2qyv. Yellow boxes show the presumptive lattice if the
image is indexed based on the brightest spots only, ignoring the weak
signal arising from pseudotranslational symmetry. Magenta boxes are
additional lattice positions predicted by one of the seven possible cell-
doubling transformations (doubling of a) listed in Table 1. The yellow and
magenta boxes together produce the lattice of the published structure.

Figure 2
Analysis of a 1� rotation photograph from the 2qyv data set. Twofold
pseudotranslational symmetry produces a main lattice of bright
reflections (yellow boxes) and a coset of weak reflections (magenta
boxes) that is identified incorrectly and correctly in (a) and (c),
respectively. The correct cell-doubling transformation can be selected
by measuring the intensities I at predicted coset spot positions, but a
potential pitfall of this calculation is illustrated by the single outlier that
heavily biases the average intensity hIi in (a). The difficulties are resolved
by modeling the entire population as either a Gaussian distribution
indicative of measurement noise (b) or an approximate exponential
distribution indicative of real Bragg diffraction (d). Red dots in (b) and
(d) are intensity observations from the cosets depicted in (a) and (c)
respectively, in the 8–3 Å resolution range, plotted against sequence
number k, where the set of intensities has been re-sorted by increasing
value. Blue curves show the best-fit expected intensities, after outlier
rejection, for Gaussian or exponential distributions as in (8) and (11).
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pixels occurs by chance at the Bragg spot position predicted by

pseudo-body centering. A naı̈ve method for confirming

pseudotranslation would be to calculate the average center-

pixel intensity hIi over the coset of predicted spots {hfractional,M}.
Unfortunately, this simple metric produces a false result in the

case of Fig. 2(a) as the single outlying spot biases hIi enough
that the incorrect pseudo body-centered lattice scores higher

than the correct lattice shown in Fig. 2(c). In order to reliably

analyze the data, one must consider the intensity distribution

over the entire coset population. Disregarding the single

outlier, coset intensities measured on the incorrect sublattice

are distributed on a Gaussian profile (Fig. 2b) as expected

from background noise. In contrast, coset intensities from the

correct sublattice form an approximate exponential distribu-

tion (Fig. 2d) consistent with Bragg diffraction [equation (1);

Gramlich, 1984]1.

To implement population modeling in software, the raw

data are initially conditioned by removing the background

signal of the image as described previously (Zhang et al.,

2006). The background is modelled on a 50-pixel grid, and we

improve upon the previous work by treating the background

within each grid area as an inclined (rather than a flat) plane,

deriving the local plane constants by the method of Rossmann

(1979). After subtraction of the background, pixel values are

re-expressed in terms of the background variance (specifically,

in units of the root-mean-squared deviation of local back-

ground pixels away from the best-fit background plane). We

then take the set of center-pixel intensity measurements at

predicted Bragg spot positions (within a suitably thin resolu-

tion shell) and attempt to fit the population to both a Gaussian

distribution

PðIÞ ¼ 1

�ð2�Þ1=2 exp � ðI � �Þ2
2�2

� �
; ð6Þ

with mean � and standard deviation �, and to an exponential

distribution as in (1). Outliers are rejected by random-sample

consensus (Fischler & Bolles, 1981). Briefly, model parameters

(� and � for a Gaussian distribution; � for an exponential

distribution) are calculated from a very small randomly

chosen subset of the population. This process is repeated a

large number of times, allowing the selection of a final model

and a final distribution type (Gaussian or exponential) that fits

the largest number of data from the whole set. The criteria for

evaluating model fit are explained in AppendixA. The method

is useful for distinguishing Bragg diffraction from noise, even

though the analysis is performed before the data-integration

step and before Lorentz, polarization and partiality correc-

tions are applied to improve the accuracy of the potential

Bragg intensities.

3.2. Rejection of nonconforming spot profiles

In addition to testing whether the intensity distribution

is consistent with Bragg diffraction, it is also necessary to

confirm that the observed spot positions match the candidate

sublattice to high precision. This guards against unwarranted

conclusions from diffraction patterns such as that shown in

Fig. 3. Here, the Bragg spots on the main lattice {hinteger} are

round in shape and are perfectly centered at their predicted

positions. However, while the spot intensities on the candidate

coset {hfractional, M} form an acceptable exponential distribu-

tion, the spot shapes appear to be broken and are not well

centered on the lattice. Rather than being an indication of

pseudotranslation, this diffraction pattern is likely to arise

from some other phenomenon such as fragmentation of the

crystal sample.

The automatic rejection of this candidate sublattice is

accomplished by a statistical analysis of spot positions. The

brightest spots used for autoindexing are grouped together to

form an average spot profile, after which a rectangular mask is

constructed that accommodates the profile plus a strip of

background pixels on each side. Fig. 3(b) shows a 16� 16 pixel

mask with greyscale shading to indicate the normalized

intensity of each profile pixel. The mask is now positioned on

the image at every Miller index h0 (Fig. 3a) and the location of
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Figure 3
The use of positional information in a diffraction pattern to rule out the
presence of pseudotranslation. In (a), yellow and magenta boxes are
centered at Bragg positions on the main lattice and candidate coset,
respectively. (b) plots the observed position of the pixel maximum found
in each box in relation to the predicted box position. The plot shows that
spot maxima on the main lattice (yellow dots) cluster tightly around their
predicted positions. The distribution can be modeled as a bivariate
Gaussian, with the yellow ellipse enclosing 95% of the probability density.
Spot maxima on the candidate coset (magenta dots) lie mainly outside of
this ellipse (70% in this case), showing that the coset spots do not
conform to the expected sublattice.

1 The intensity distribution of (1) applies only to acentric reflections, not to
centric reflections (Wilson, 1949; French & Wilson, 1978). However, since the
Bravais symmetry has not yet been identified at this stage of the analysis, we
do not strictly know which measurements arise from acentric or centric Bragg
spots. Here, we take the simple expedient of treating all observations as if they
arise from acentric reflections, relying on the prevalence of acentric spots to
allow the population to be modelled according to (1).
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the strongest observed pixel within the mask is noted. This is

performed separately for the main lattice {hinteger} and candi-

date coset {hfractional, M}. In order for the candidate coset to be

accepted as valid, the coset pixel maxima must be clustered

normally around the predicted spot positions, just as they are

for the main lattice. Bivariate Gaussian statistics are used to

model the population of pixel maxima from the main lattice,

and the candidate sublattice is rejected if too many of the

coset maxima (e.g. > 50%) fall outside this distribution, as in

Fig. 3(b).

3.3. Avoidance of overlapping Bragg reflections

The above examination of Bragg spots relies on the

assumption that lattice positions are well separated across the

detector face. Yet it is understood (Dauter, 1999) that factors

such as large unit cell and high mosaicity will inevitably

produce spot overlap. Therefore, before any signal analysis is

performed, pairs of hinteger and hfractional, M Bragg spots are

removed if there is mutual overlap of the masks described in

x3.2 (and depicted as boxes in Figs. 1–4). This is performed

separately for each sublattice L0 and the sublattice is rejected

as a candidate if the remaining non-overlapped spots are too

few in number for meaningful statistics (e.g. < 200). The effi-

cient identification of overlapping masks is facilitated by the

use of the Approximate Nearest Neighbor software library

(Arya et al., 1998).

Discovery of spot overlaps relies on the accurate ability to

predict whether particular Miller indices will be in diffracting

position for a given rotational setting of the crystal. In this

context it is important to consider two limitations. Firstly, the

lattice parameters used here (including the orientation matrix

A and the effective mosaicity m) are only initial estimates

derived from autoindexing. The parameters are post-refined in

a subsequent data-processing step (Winkler et al., 1979;

Rossmann et al., 1979) after integration, but the post-refined

values are not yet available at the step utilized here for

considering pseudotranslation. Furthermore, the use of a

single effective mosaicity parameter m is a simplification that

does not account for separate contributions from different

physical sources of crystal disorder, anisotropic disorder or the

distinct effects of beam divergence. We do not attempt to

create a highly accurate or detailed model, and consequently

must allow for the possibility that the diffraction intensity at

the position of a candidate coset spot might actually arise from

the rocking-curve tail of a nearby main-lattice spot that is not

predicted to diffract based on the available model.

This safeguard is implemented by adding a second overlap-

detection step. Coset spots hfractional, M are individually

considered, enumerating all Miller indices on the main lattice

hinteger that are immediately adjacent in reciprocal space.

Detector positions are calculated for each of these hinteger
spots, even if the crystal rotational setting needed to satisfy the

reflecting conditions (given the available model parameters A

and m) is outside the rotational range used to acquire the

image. In this way, we can reject coset spots that could
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Figure 4
Detail from a 1� rotation photograph used to solve PBD entry 1vr9. (a)
shows an initial lattice model from autoindexing, with effective mosaicity
m = 0.3�. The apparent presence of a lattice layer with half-integer Miller
indices l = 412 (magenta) would seem to be consistent with c-axis doubling.
However, these Bragg spots can also be interpreted as arising from highly
mosaic rocking curves from the main lattice layers at l = 4 (yellow) or l = 5
(not shown). The overlap of integer- and half-integer-layer spots upon
increasing the mosaicity parameter [m = 1.3� is depicted in (b)] prevents
the use of these particular spots as evidence of pseudotranslation.

Table 2
Representative diffraction statistics indicative of pseudotranslation.

I is the integrated intensity and � is the experimental error. IM are main lattice intensities and IC are sublattice coset intensities. N is the number of observations
averaged in each resolution range. The intensity data represent partially and fully measured reflections from a single 1� rotation image after application of Lorentz,
polarization and partiality corrections.

PDB entry 2qyv PDB entry 2gb3

Main lattice Sublattice coset Main lattice Sublattice coset

Resolution (Å) hIi hI/�(I)i N hIi hI/�(I)i N hIMi/hICi hIi hI/�(I)i N hIi hI/�(I)i N hIMi/hICi
1–7.9 14437 19.5 46 273 9.1 45 52.9 10167 18.1 30 325 8.8 45 31.3
7.9–5.6 4371 13.6 78 304 8.5 94 14.4 1876 11.7 35 303 6.3 92 6.2
5.6–4.6 6449 12.6 119 755 9.5 117 8.5 2863 10.3 45 578 5.6 111 5.0
4.6–4.0 6506 12.5 120 883 8.7 138 7.4 2769 9.0 59 704 5.5 141 3.9
4.0–3.5 4331 11.5 164 743 7.9 154 5.8 1977 7.8 87 545 4.4 142 3.6
3.5–3.2 2724 9.2 160 547 5.8 178 5.0 1090 5.8 91 297 2.8 168 3.7
3.2–3.0 1577 8.0 182 375 4.4 176 4.2 503 3.5 97 280 2.5 179 1.8
3.0–2.8 921 6.8 185 233 3.2 193 4.0 308 2.6 102 258 2.3 195 1.2
2.8–2.6 615 5.5 165 185 2.7 168 3.3 276 2.1 99 169 1.6 213 1.6
2.6–2.5 323 4.1 118 90 1.7 125 3.6 148 1.3 115 132 1.3 207 1.1
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potentially be overlapped if the model value m is unrealisti-

cally small (Fig. 4). Enumeration of all neighboring spots is

computationally intensive, so the calculation is limited to a

small set of representative coset spots distributed across the

face of the detector. Candidate coset spots are rejected if the

nearest representative spot is potentially overlapped.

3.4. Sublattice validation using integrated intensities

The strategy outlined above examines individual pixel

intensities in the raw data to detect any sublattice that may

have been ignored during the autoindexing step. To verify the

presence of a sublattice, it is useful to re-examine the Bragg

intensities after the data have been integrated, as other

authors have done (e.g. Chook et al., 1998). To implement this,

the raw data (typically the one or two rotation images that

have been used for autoindexing) are integrated with

MOSFLM (Leslie, 1999) based on the triclinic basis setA0. For
each potential transformation matrix M, the Miller indices h0

of the integrated data are then back-transformed by (5),

dividing the intensities into a main set with indices {hinteger, M}

and a coset with indices {hfractional, M}. A particular pseudo-

translation is inferred if both (i) the coset has significant data,

i.e. the coset’s average intensity-to-error ratio hI/�(I)i is

greater than 1.0, and (ii) the average intensities on the main

lattice hIMi are significantly greater than those on the coset

hICi, at least in the lowest resolution bins. These calculations

can be performed on single images (see Table 2), offering the

potential for pseudotranslation to be validated prior to

acquiring the complete data set.

4. Application to experimental data

The public availability of an archive of complete diffraction

data sets from the Joint Center for Structural Genomics

(Burley et al., 2008; http://www.jcsg.org) provides an excellent

opportunity to test new methods on real data (Baker et al.,

2008). Table 2 illustrates two cases where pseudotranslation is

clearly detected by examining individual rotation images.

JCSG’s published structure of Haemophilus somnus Xaa-

His dipeptidase (PDB entry 2qyv) is based on 90� wedges of
rotation data taken at four X-ray wavelengths from a single

crystal with space group P21212 and unit-cell parameters

a = 174, b = 84, c = 123 Å. The asymmetric unit contains two

protomers related by a pseudo-crystallographic translation, as

evidenced (for example) by the presence of a strong peak at

the fractional coordinates (12,
1
2,

1
2) of a native Patterson map. It

is possible to detect a pattern of alternating strong and weak

Bragg spots on each image, but the ability to reliably choose

the correct lattice during autoindexing is completely depen-

dent on the details of the spot-picking procedure. In this

particular data set, the spot-picking programDISTL (Zhang et

al., 2006) typically detects over 1000 candidate Bragg spots per

image. If this entire set is used, separate autoindexing of each

image always produces the correct P21212 lattice because the

weak coset is always adequately represented. However, using

all the candidate spots generally carries the risk that the lattice

will be obscured by spurious signals that only appear to be

Bragg spots; therefore, autoindexing success is often improved

by fitting the lattice to a smaller subset consisting of the

brightest spots. For the 2qyv data set, a safer algorithm (using

the 300 brightest spots on each image for autoindexing)

completely misses the alternating weak spots, invariably

producing basis vectors consistent with an I-centered ortho-

rhombic lattice with unit-cell parameters a = 84, b = 123,

c = 174 Å, where the asymmetric unit contains only one

protomer. The situation is reconciled by applying the

methodology of x3 (see Figs. 1 and 2, and Table 2), allowing us

to validate the presence of alternating weak spots after using

the robust autoindexing method with the brightest spots.

JCSG’s structure of Thermotoga maritima aspartate

aminotransferase (PDB entry 2gb3) provides a contrasting

example where the normal autoindexing approach is sufficient

to detect pseudotranslation. Here, the space group is P21 with

unit-cell parameters a = 75, b = 214, c = 77 Å, � = 112�. The
asymmetric unit contains three �2 dimers related by threefold

pseudo-crystallographic translation, as shown by the presence

of a strong peak at the fractional coordinates (0, 1/3, 0) of a

native Patterson map. In this case, the safe method (sorting the

candidate Bragg spots and indexing on the brightest ones)

does not limit the ability the choose the correct lattice. In all

the images archived (86� wedges composed of 0.25� rotation

images taken at two X-ray wavelengths and 130� wedges

composed of 1� rotation images taken at three X-ray wave-

lengths), as long as enough candidate Bragg spots are used to

produce any lattice solution, the correct sublattice is found

without the additional computational steps taken in xx3.1–3.3
(see Table 2).

5. Software availability

The procedures described here are included in LABELIT

v.1.1 (and above), which is available for download by non-

commercial users at http://cci.lbl.gov/labelit. A benefit of the

present treatment is that pseudotranslation can be detected

from a single image, automatically and without visual

inspection, immediately after the autoindexing step. It is

therefore possible for the results to play a role in decision-

making during data aquisition, if for example the identification

of the correct Bravais lattice permits an advantageous choice

of data-collection strategy (Dauter, 1999).

Adjustments to the exact algorithm used can be made by

setting run-time parameters, potentially assisting with the

analysis of difficult cases where the default settings do not
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Table 3
Sample command-line parameters affecting sublattice detection.

Parameter (with default value) Function

sublattice_allow = True|False
(True after v.1.1; False previously)

Turn on sublattice detection as
described in x3

sublattice_maximum_modulus = 3 Maximum value of n, the sublattice
index

sublattice_pdf_file = <filename>
(default: no output)

Create a graphical representation
of the sublattice as in Fig. 1.
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produce the desired result. Sample parameters are listed in

Table 3 and a complete listing is given in the online docu-

mentation.

APPENDIX A
Parameter fitting

Given a Gaussian distribution with mean � and standard

deviation � as in (6), the cumulative distribution function, or

probability that an observation will have a value between �1
and I, is

�ðIÞ ¼ 1

2
1þ erf

I � �

�21=2

� �� �
; ð7Þ

where erf is the error function. As a result, if there are N

observations sorted in order of increasing value and indexed

by the symbol k (k = 0, 1, . . . ,N� 1), the expected intensity of

the kth value can be modeled as

IcalcðkÞ ¼ �21=2erf�1 2kþ 1

N
� 1

� �
þ �: ð8Þ

In x3.1 we reject the kth observation Iobs(k) as an outlier if the

difference between observation and expectation is too large,

e.g.

jIobsðkÞ � IcalcðkÞj > 0:5�: ð9Þ
A computationally tractable approximation for the erf�1

function is given by Winitzki (2008), which while low in

precision is sufficient for the present application.

For exponential distributions with mean value � as in (1),

the cumulative distribution function is

�ðIÞ ¼ 1� expð�I=�Þ: ð10Þ
The expected intensity of the kth value in a set of N obser-

vations is

IcalcðkÞ ¼ b�� ln 1� kþ 1
2

N

� �
; ð11Þ

where b is an ad hoc parameter allowing the exponential decay

in the distribution of intensities to begin at a nonzero value.

Here, a useful criterion for rejecting outliers is

jIobsðkÞ � IcalcðkÞj > 0:2�: ð12Þ
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González, A., Moorhead, P., McPhillips, S. E., Song, J., Sharp, K.,
Taylor, J. R., Adams, P. D., Sauter, N. K. & Soltis, S. M. (2008). J.
Appl. Cryst. 41, 176–184.

Gramlich, V. (1984). Acta Cryst. A40, 610–616.
Grosse-Kunstleve, R. W., Sauter, N. K. & Adams, P. D. (2004). Acta
Cryst. A60, 1–6.

Hauptman, H. & Karle, J. (1953). Solution of the Phase Problem. I.
The Centrosymmetric Crystal, ACA Monograph No. 3. New York:
Polycrystal Book Service.

Hauptman, H. & Karle, J. (1959). Acta Cryst. 12, 846–850.
Kabsch, W. (1988). J. Appl. Cryst. 21, 67–72.
Kabsch, W. (1993). J. Appl. Cryst. 26, 795–800.
Leslie, A. G. W. (1999). Acta Cryst. D55, 1696–1702.
Leslie, A. G. W., Powell, H. R., Winter, G., Svensson, O., Spruce, D.,
McSweeney, S., Love, D., Kinder, S., Duke, E. & Nave, C. (2002).
Acta Cryst. D58, 1924–1928.

Page, R., Deacon, A. M., Lesley, S. A. & Stevens, R. C. (2005).
J. Struct. Funct. Genom. 6, 209–217.

Read, R. J. (2001). International Tables for Crystallography, Vol. F,
edited by M. G. Rossmann & E. Arnold, pp. 325–331. Dordrecht:
Kluwer Academic Publishers.

Rossmann, M. G. (1979). J. Appl. Cryst. 12, 225–238.
Rossmann, M. G., Leslie, A. G. W., Abdel-Meguid, S. S. & Tsukihara,
T. (1979). J. Appl. Cryst. 12, 570–581.

Rutherford, J. S. (2006). Acta Cryst. A62, 93–97.
Sauter, N. K., Grosse-Kunstleve, R. W. &Adams, P. D. (2004). J. Appl.
Cryst. 37, 399–409.

Sauter, N. K., Grosse-Kunstleve, R. W. &Adams, P. D. (2006). J. Appl.
Cryst. 39, 158–168.

Steller, I., Bolotovsky, R. & Rossmann, M. G. (1997). J. Appl. Cryst.
30, 1036–1040.

Warkentin, E., Hagemeier, C. H., Shima, S., Thauer, R. K. & Ermler,
U. (2005). Acta Cryst. D61, 198–202.

Wilson, A. J. C. (1949). Acta Cryst. 2, 318–321.
Winitzki, S. (2008). A Handy Approximation for the Error Function
and its Inverse. http://homepages.physik.uni-muenchen.de/~Winitzki/
erf-approx.pdf.

Winkler, F. K., Schutt, C. E. & Harrison, S. C. (1979). Acta Cryst.A35,
901–911.

Zhang, Z., Sauter, N. K., van den Bedem, H., Snell, G. & Deacon,
A. M. (2006). J. Appl. Cryst. 39, 112–119.

Zwart, P. H., Grosse-Kunstleve, R. W. & Adams, P. D. (2005). CCP4
Newsl. 42, contribution 10.

Zwart, P. H., Grosse-Kunstleve, R. W. & Adams, P. D. (2006). CCP4
Newsl. 44, contribution 8.

research papers

Acta Cryst. (2009). D65, 553–559 Sauter & Zwart � Autoindexing 559
electronic reprint


