
electronic reprint

Journal of

Applied
Crystallography

ISSN 0021-8898

Editor: Gernot Kostorz

Improved statistics for determining the Patterson symmetry from
unmerged diffraction intensities

Nicholas K. Sauter, Ralf W. Grosse-Kunstleve and Paul D. Adams

Copyright © International Union of Crystallography

Author(s) of this paper may load this reprint on their own web site provided that this cover page is retained. Republication of this article or its
storage in electronic databases or the like is not permitted without prior permission in writing from the IUCr.

J. Appl. Cryst. (2006). 39, 158–168 Nicholas K. Sauter et al. � Determining the Patterson symmetry



research papers

158 doi:10.1107/S0021889805042299 J. Appl. Cryst. (2006). 39, 158–168

Journal of

Applied
Crystallography

ISSN 0021-8898

Received 6 August 2005

Accepted 16 December 2005

# 2006 International Union of Crystallography

Printed in Great Britain – all rights reserved

Improved statistics for determining the Patterson
symmetry from unmerged diffraction intensities

Nicholas K. Sauter,* Ralf W. Grosse-Kunstleve and Paul D. Adams

Physical Biosciences Division, Lawrence Berkeley National Laboratory, One Cyclotron Road,

Bldg 64R0121, Berkeley, CA 94720, USA. Correspondence e-mail: nksauter@lbl.gov

Procedures for detecting the point-group symmetry of macromolecular data sets

are examined and enhancements are proposed. To validate a point group, it is

sufficient to compare pairs of Bragg reflections that are related by each of the

group’s component symmetry operators. Correlation is commonly expressed in

the form of a single statistical quantity (such as Rmerge) that incorporates

information from all of the observed reflections. However, the usual practice of

weighting all pairs of symmetry-related intensities equally can obscure the fact

that the various symmetry operators of the point group contribute differing

fractions of the total set. In some cases where particular symmetry elements are

significantly under-represented, statistics calculated globally over all observa-

tions do not permit conclusions about the point group and Patterson symmetry.

The problem can be avoided by repartitioning the data in a way that explicitly

takes note of individual operators. The new analysis methods, incorporated into

the program LABELIT (http://cci.lbl.gov/labelit), can be performed early

enough during data acquisition, and are quick enough that it is feasible to pause

to optimize the data collection strategy.

1. Introduction

Knowledge of the crystal symmetry is of fundamental impor-

tance to macromolecular crystallography. Experience has

shown that even when it is possible to solve a structure under

the wrong symmetry, the resulting atomic model can have

subtle errors leading to incorrect biological conclusions

(Kleywegt et al., 1996). Here we focus on methods for iden-

tifying the Patterson symmetry from raw diffraction data [for

definitions see x2 of the International Tables for Crystal-

lography; (Hahn, 1996; referred to as IT96 hereafter)]. There

are two components of this analysis. First, if the data are

collected with the usual rotation method (Arndt et al., 1973), a

single oscillation image can reveal the metric symmetry of the

unit-cell dimensions, permitting the crystal to be classified into

one of 14 Bravais types. Secondly, once a complete or partial

data set is acquired, the point-group symmetry of the reci-

procal lattice (ignoring the effects of anomalous dispersion)

produces an assignment into one of 11 Laue classes. The

correct combination of Bravais type and Laue class, giving one

of 24 Patterson symmetries, must be known before performing

any subsequent steps, such as merging of symmetry-related

measurements, detection of screw axes and phasing.

Correct identification of the Laue class is also crucial for

calculating the optimal data collection strategy (Ravelli et al.,

1997; Dauter, 1999; Popov & Bourenkov, 2003) after a crystal

has been transferred to the goniostat and the diffraction

pattern has been indexed. In many cases the Laue class is

known from previous studies of similar crystal samples.

However, in other contexts, such as high-throughput crystal

screening, the exact point group may not be known ahead of

time. For this reason, it is desirable to have a quick robust

method for analyzing the symmetry soon after data acquisition

has begun. The data collection strategy can then be optimized

before the remainder of the data set is collected.

There are several practical matters to consider if one is to

determine the Patterson symmetry automatically and accu-

rately. For low-symmetry crystal families (triclinic, monoclinic

and orthorhombic) it is sometimes possible to learn the

Patterson symmetry from a single oscillation image, since the

point group follows immediately from the metric symmetry.

However, with higher-symmetry families (tetragonal, trigonal,

hexagonal and cubic), there is more than one possible Laue

class for each Bravais lattice (e.g. a tetragonal cell can have

either 4=m m m or 4=m point symmetry). The crystal must

therefore be rotated through an angular range sufficient for

the point-group symmetry to be tested. Furthermore, it is well

known that experimental uncertainty in the unit-cell dimen-

sions can preclude drawing conclusions about the Bravais

lattice. It is common to find monoclinic lattices with � angles

near 90�, which therefore appear to be orthorhombic; or

orthorhombic crystals with two cell lengths nearly equal

(Fig. 1), which therefore appear to be tetragonal. In these

cases, again, one must collect enough data to determine the

point-group symmetry before making a final conclusion about

the Bravais lattice.

The issue of data completeness becomes central when an

attempt is made to use an automated procedure to identify the
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point-group symmetry. A challenging example is illustrated in

Fig. 1, where the point group of an apparently tetragonal

crystal is in question. The algorithm must distinguish among

the tetragonal Laue classes 4=m m m or 4=m, as well as the

lower-symmetry classes m m m, 2=m and �11. Fundamentally,

point groups must be proven by observing correlated inten-

sities for symmetry-related reflections. In common practice,

data are merged under all possible Laue classes, and the

correlation between related reflections is statistically quanti-

fied. A straightforward measure is the merging reliability

(Weiss, 2001),

Rmerge ¼
P

hkl

PNhkl

i¼1 IiðhklÞ � hIðhklÞi�� ��
P

hkl

P
i IiðhklÞ ; ð1aÞ

where I(hkl) is the intensity of a Bragg reflection,
P

hkl is a

sum over all Miller indices in the merged data set, and
P

i is a

sum over the Nhkl symmetry-related measurements for a given

Miller index. One typically chooses the highest-symmetry

Laue class with a reasonable Rmerge. However, for the

incomplete data set illustrated in Fig. 1, Rmerge cannot be

directly used to determine if there is fourfold rotational

symmetry along c, and therefore is problematic for auto-

matically evaluating the 4=m Laue class. This can be made

explicit by rewriting equation (1a) as

Rmerge ¼
P

hkl

PNhkl

i¼1 ð1=NhklÞ
PNhkl

j¼1 ½IiðhklÞ � IjðhklÞ��� ��
P

hkl

P
i IiðhklÞ : ð1bÞ

If Rmerge, calculated under 4=m symmetry, is to be sensitive to

the presence of a fourfold, then a significant fraction of the

[Ii(hkl) � Ij(hkl)] terms in equation (1b) must represent pairs

of measured reflections Ii, Ij related by a fourfold rotation. But

as shown in Table 1, there are vanishingly few such pairs when

the angular rotation is small. Even as the data set nears

completion (e.g. after 75� of angular rotation), fourfold

symmetry is still poorly represented.

A conclusion from Table 1 is that globally defined statistics

(those calculated over all measured reflections) cannot be

relied upon universally to score candidate Laue classes. If the

goal is to determine the point group during data collection,

after completing only a small fraction of the total angular

rotation, then individual symmetry operators may be drasti-

cally under-represented within the data set. This basic result is

unchanged even if a different global indicator of data quality is

used (see Weiss, 2001, for a general discussion of global indi-

cators) such as the redundancy-independent Rmerge or the

I=�ðIÞ ratio.

To overcome the limitations of global data quality indica-

tors, we propose an algorithm that partitions the measure-

ments so that individual symmetry operators can be assessed.

Operators found to be valid are then re-grouped to give the

correct point group. If particular operators are missing from

the data set, this is duly noted. Our approach is analogous to

that used in past years in which reflections on a single-layer

precession photograph (Blundell & Johnson, 1976) were

compared to distinguish, for example, between a twofold and a

fourfold symmetry axis. Importantly, we provide a software

framework within the LABELIT package (Lawrence Berkeley

Laboratory Indexing Toolbox) where all possible Laue classes

are efficiently analyzed by a single command, so it is not

necessary for the user to submit multiple processing jobs to

compare point groups.
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Table 1
Representation of fourfold symmetry in Rmerge statistics resulting from
the rotation geometry in Fig. 1.

Angular
rotation
(�)

Data set
completeness to
3 Å resolution (%)†

Fraction of (Ii – Ij)
terms contributed by the
fourfold (%)‡

15 27.8 0.7
30 47.0 1.1
45 63.5 1.6
60 79.3 2.7
75 94.2 6.6
90 98.4 15.2

105 98.4 32.7
120 98.4 43.3

† Assuming that the true Patterson symmetry is P m m m, with unit cell a = 91.819, b =
92.358, c = 119.347 Å. Completeness never reaches 100% with the rotation depicted in
Fig. 1 due to missing reflections along the c*-axis spindle. ‡ In the context of an Rmerge

statistic [equation (1b)] calculated under P 4=m symmetry. Terms with i = j are not
counted.

Figure 1
Ewald diagram (see Dauter, 1999, for a detailed explanation) showing a
case where a global measure of data quality like Rmerge cannot by itself
establish the point-group symmetry. The diagram depicts a slice through
the reciprocal-space a*b* plane for an orthorhombic crystal where a ’ b
within the limits of experimental uncertainty. Diffraction data are
collected from the shaded area of reciprocal space by rotating the crystal
about the c* axis, perpendicular to the incident beam. For total rotation
angles that produce incomplete data sets (Table 1), there are relatively
few reflection pairs available to test whether the c* axis (indicated by a
‘?’) is a fourfold rotation axis. If global statistics are calculated under
various point groups, statistics for the incorrect group 4=m (containing a
fourfold along c*) are experimentally indistinguishable from statistics for
the correct group m m m (containing twofolds along a*, b* and c*). The
particular rotation range shown was chosen to illustrate best how the
under-representation of symmetry operators can interfere with symmetry
identification.
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2. Notation

Scalar quantities are represented in italic type. Vectors are

denoted in lowercase bold, and matrices and tensors are

written in uppercase bold. The superscript T represents the

transpose of a vector or matrix.

The components of row vector h are given as [hkl], while the

corresponding column vector is written as [hkl]T. A unit-length

vector is denoted ĥh. Matrices are sometimes expressed as a

sequence of column vector components, A* = [a*, b*, c*], or

written out fully as scalar components in brackets.

Sets are represented by non-serified symbols, with Z
specifically meaning the set of integers, M a supergroup, and H
a subgroup. Elements of a set are enumerated as {a, b, c}, while

the form {hkl} indicates a set of lattice planes.

The (W, w) formalism for symmetry operations from Fischer

& Koch (1996) consists of a (3 � 3) matrix denoting the

rotation part W, and a (3 � 1) translation part w. The rotation

operator W can also be shown in Jones–Faithful notation (e.g.

x, y, z).

The notation ½exeyez�N or ½exeyez�N�1 is used to describe a

rotation operator of type N 2 1; 2; 3; 4; 6; �11; �22; �33; �44; �66
� �

with

axis direction ½exeyez�. The superscript�1 is used for operators

with a negative sense of rotation.

3. Computational approach

To determine the point-group symmetry accurately, we sepa-

rately consider each rotational symmetry operator W (Fischer

& Koch, 1996) that is consistent with the unit-cell parameters.

A list is made of pairs of measured reflections related by W or

its rotoinversion W, and the symmetry-operator reliability for

W is defined as

RsymopðWÞ ¼
P

pairs

P
i Ii � hIi
�� ��

P
pairs

P
i Ii

; ð2Þ

where
P

pairs is a sum over the NW pairs of Bragg spots

related by W or W, and
P

i is a sum over both measurements

in the pair. The definition of Rsymop is intended to be analo-

gous to that of Rmerge, with the advantage that Rsymop explicitly

isolates the correlation of reflections related by the individual

operator W, even if NW is a relatively small number. For a

candidate point group to be accepted, the maximum

Rsymop(W) value over all symmetry operators in the group

must be reasonably low.

The procedures that lead to the Rsymop calculation are

outlined in Fig. 2, and are described below. The first part of the

analysis rests upon measuring the positions of Bragg reflec-

tions, which are used to determine the unit cell; while the final

section requires that reflection intensities be integrated and

scaled.

3.1. Determining the metric symmetry

3.1.1. Data collection and indexing. The analysis of metric

symmetry (the symmetry of the lattice, without regard for the

physical contents of the unit cell) begins by identifying the

repeating pattern in the diffraction image. This initial step of

indexing (Steller et al., 1997) can usually be performed with a

single oscillation image. However, to determine the incident-

beam position (Sauter et al., 2004) and unit-cell parameters

most accurately, it is often advantageous to utilize two images

collected at rotational settings differing by 90� (where the

rotational axis is perpendicular to the incident X-ray beam). It

is best to obtain these two images before any other data are

collected, so the metric analysis can be performed on data that

are relatively unaffected by radiation damage. Starting with

the positions of the Bragg reflections, one derives a set of three

basis vectors that exactly cover the reciprocal lattice. Such

vectors are said to be a primitive basis. Although vectors

spanning the lattice can be chosen in an infinite number of

ways, we employ a cell-reduction procedure (x6 of Grosse-

Kunstleve et al., 2004a) to assure that a standard set is

selected with minimal vector lengths. These reduced vectors

A* = [a*, b*, c*] describe the unit-cell edges of the primitive

lattice in reciprocal space. For relating this basis to the

orthonormal x̂x ŷy ẑz laboratory coordinate system, it is equiva-

lent to express the basis as an orientation matrix,

A� ¼
a�x b�x c�x
a�y b�y c�y
a�z b�z c�z

0
@

1
A; ð3Þ

where the subscripts x, y and z refer to projections onto the

laboratory axes at a crystal rotational setting ’ = 0�. The

direct-space basis A = [a, b, c]T is obtained by inverting the

reciprocal-space orientation matrix,
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Figure 2
Computational steps for determining the Patterson symmetry. The crystal
rotation axis ’ is perpendicular to the incident beam.
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A ¼ ðA�Þ�1 ¼
ax ay az

bx by bz

cx cy cz

0
@

1
A: ð4Þ

3.1.2. Location of rotational symmetry axes. The next step

is to locate all of the twofold rotational symmetry axes of the

lattice. To cast this problem in algebraic terms, points on the

lattice are expressed as integer linear combinations of the

basis vectors: direct-space lattice vectors are t = uaa + ubb + ucc

(with ua; ub; uc 2 Z) and reciprocal-space vectors are

s = ha* + kb* + lc* (with Miller indices h; k; l 2 Z). Expressed

in the laboratory frame, we have t = ATu, with u = [uaubuc]
T;

and s = (A*)h, with h = [hkl]T. An algorithm given by Le Page

(1982) allows us to select all combinations of t and s that line

up to form twofolds. A compelling advantage of Le Page’s

approach is its ability to accommodate experimental uncer-

tainty (Le Page, 1982; Grosse-Kunstleve et al., 2004a; Sauter et

al., 2004). Because of measurement imperfections, t and s are

unlikely to line up exactly on a symmetry axis, but the (small)

angle between them,

� ¼ cos�1 jt � sj
jtj jsj ; ð5Þ

offers a convenient way for judging a candidate axis. Experi-

ence indexing several hundred data sets has led to the

recommended cutoff of � = 1.4�, used in LABELIT. If an axis

has a larger � value, it is certain not to be a twofold symmetry

axis, while a lower value indicates that it is a plausible twofold

candidate, subject to later verification when the point group is

determined. It is instructive to consider the example of Fig. 1,

taking the experimentally measured reduced-cell constants to

be

a ¼ 91:80; b ¼ 92:36; c ¼ 119:37 Å;

� ¼ 89:996; � ¼ 89:903; � ¼ 89:772�:
ð6Þ

The resulting list of candidate twofold axes (Table 2) is suffi-

cient to construct either an orthorhombic or a tetragonal cell,

illustrating how the method can accommodate minor errors in

the measured cell dimensions.

3.1.3. Expression of the rotation in matrix operator form.

Lattice symmetry is completely determined by the twofold

axes (Le Page, 1982). For example, the apparent fourfold axis

along the [001] direction in Fig. 1 can be derived by combining

the twofolds along [100] and [110]. This can be shown

geometrically by considering space-group diagrams as in IT96,

but for computational purposes it is most useful to combine

symmetry operations through algebraic manipulation. A

prerequisite for this is to rewrite the rotation in the form of a

matrix operator W (Fischer & Koch, 1996). In laboratory

(Cartesian) space, a twofold rotation about t is expressed by

the operator

WLAB ¼

2t̂t 2
x � 1 2t̂txt̂ty 2t̂txt̂tz

2t̂txt̂ty 2t̂t 2
y � 1 2t̂tyt̂tz

2t̂txt̂tz 2t̂tyt̂tz 2t̂t 2
z � 1

0
BBBB@

1
CCCCA
; ð7Þ

where we use components of the normalized vector t̂t =

t=ðt � tÞ1=2 (Goldstein, 1980). The laboratory-frame matrix is

converted to the crystallographic basis A with the transfor-

mation W = (AT)�1WLAB(AT), and the resulting matrix

elements are rounded to the nearest integer. Rounding is

necessary because of the non-zero value of angle �, and

because of the finite-precision representation of the matrix

elements of A. An example operator is the twofold along the c

axis,

W ¼
�1 0 0

0 �1 0

0 0 1

0
@

1
A: ð8Þ

The corresponding Jones–Faithful expression (�x, �y, z), is

listed in Table 2.

3.1.4. The metric supergroup. With the twofold symmetry

operators W constructed, the full symmetry group of the

lattice can be derived by group multiplication (x3 of Grosse-

Kunstleve, 1999). Continuing with the example of Table 2, the

five listed rotations combine with the identity and inversion

operators (1 and �11) to produce space-group P 4=m m m, with

symmetry operations listed in Table 3. This group represents

the highest possible Patterson symmetry consistent with the

measured unit cell, and indeed all possible Patterson

symmetries are subgroups. The set is therefore denoted as the

metric supergroup M. One metric supergroup corresponds to

each Bravais type.
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Table 2
Candidate twofold rotational symmetry axes from metric analysis.

Axis No. � (�) u W

1 0.097 [001] �x, �y, z
2 0.228 [010] �x, y, �z
3 0.248 [100] x, �y, �z
4 0.355 [�1110] �y, �x, �z
5 0.356 [110] y, x, �z

Table 3
Symmetry operators in space group P 4=m m m.

Operator pair†
Non-centrosymmetric
operator

Centrosymmetric
operator

a 1 �11
b ½100�2 ½100� �22
c ½010�2 ½010� �22
d ½001�2 ½001� �22
e ½110�2 ½110� �22
f ½�1110�2 ½�1110� �22
g ½001�41 ½001� �44

1

h ½001�4�1 ½001� �44
�1

† The letter symbols used here for identifying the operator pairs are not part of a
standard nomenclature; they are simply intended to permit comparisons between Tables
3, 4, 7 and 8.
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3.2. Subgroup algebra needed for point-group determination

3.2.1. Enumeration of the Patterson subgroups. Since the

metric supergroup is based merely on the unit-cell measure-

ments, it is realised ahead of time that the symmetry must be

validated by examining the Bragg spot intensities. In some

cases (including the example of Fig. 1) some symmetry

operations of the metric supergroup will be disproved and will

have to be discarded. Anticipating this possibility, the next

task is to list all possible ways that subsets of M can form a

space group. In principle, a subset of M is a group if it is closed

under the operation of multiplication. It would be computa-

tionally expensive to identify all subgroups by brute force: in

the example of Table 3, there are 65535 non-empty subsets of

M. However, the problem is greatly simplified by mathema-

tical theorems asserting that at most three symmetry operators

are required to generate any space group (for example, Boisen

& Gibbs, 1990), if the operations are referred to a primitive

basis. Furthermore, for the present purpose of examining the

point symmetry, anomalous dispersion will be ignored, so the

reciprocal-space pattern will be centrosymmetric. This means

that one of the three space-group generators can be assumed

to be the inversion operator. Our algorithm to generate the

subgroups of interest therefore consists of adding �11 to all

possible subsets of M containing two noncentrosymmetric

operators (only 28 in the example of Table 3). These sets are

expanded algebraically by group multiplication (x3 of Grosse-

Kunstleve, 1999; x3 of Grosse-Kunstleve et al., 2004b) to derive

full subgroups, and duplicate subgroups are removed. Table 4

lists the resulting ten centrosymmetric subgroups for the

example.

Producing the list of subgroups in this manner is extremely

valuable in organizing the search for symmetry. Among the

useful features are: (a) it is made clear (Table 3) which pairs of

symmetry operators need to be validated, and how these

operators combine to form groups (Table 4); (b) all the rele-

vant Laue classes are automatically generated in cases where

several point groups are possible for the crystal family (e.g.

4=m m m and 4=m for the tetragonal family); and (c) the listing

makes clear that subgroups can have the same space-group

type (e.g. P 1 2=m 1) while possessing symmetry operators that

are oriented differently with respect to the unit cell (twofold

axes along [100], [010] or [001]). Since commonly used soft-

ware does not make this information explicit at the time of

indexing, it may be surprising that certain lattice types have as

many as 30 centrosymmetric subgroups that need to be

considered when assigning the symmetry (Table 5). However,

we must emphasize that this subgroup listing is required if the

goal is to be sure that the true symmetry is not overlooked.

3.2.2. Interconversion between subgroups. All derivations

presented so far have been performed relative to the basis set

A [equation (4)], which defines the primitive, reduced unit cell

obtained from indexing. However, for expressing crystal-

lographic quantities in a particular subgroup H it is common

practice to adopt the particular basis AH conventionally used

for that subgroup, as tabulated in IT96. We have previously

described the derivation of the change-of-basis matrix (C, c)

needed for this transformation (x5 of Grosse-Kunstleve, 1999;

C is a rotational part and c is a translational part). After

following this published procedure, we make the following

minor adjustments to produce results identical with estab-

lished convention. For monoclinic and orthorhombic
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Table 5
Number of centrosymmetric subgroups.

Bravais
lattice†

Metric
supergroup

Number of
non-centrosymmetric
operators in the
supergroup (NP)

Number of
centrosymmetric
subgroups

aP P �11 1 1
mP P 1 2=m 1 2 2
mC C 1 2=m 1 2 2
oP P m m m 4 5
oC C m m m 4 5
oI I m m m 4 5
oF F m m m 4 5
tP P 4=m m m 8 10
tI I 4=m m m 8 10
hP P 6=m m m 12 16
hR R�33 m : H‡ 6 6
cP P m �33 m 24 30
cI I m �33 m 24 30
cF F m �33 m 24 30

† Crystal families: a, anorthic (triclinic); m, monoclinic; o, orthorhombic; t, tetragonal; h,
hexagonal; c, cubic. Centering types: P, primitive; C, C-centered; I, body-centered; F,
face-centered; R, rhombohedral. ‡ The hexagonal setting of space group R �33 m.

Table 4
Centrosymmetric subgroups of P 4=m m m.

Conventional
setting

Rotational part C of
the change-of-basis matrix

Symmetry in the original,
reduced basis†

Operator pairs of P 4=m m m
(Table 3) present in the subgroup

P 4=m m m x; y; z P 4=m m m a b c d e f g h
P 4=m x; y; z P 4=m a d g h
C m m m x=2� y=2; x=2þ y=2; z Hall: �C 2 2 ðx� y; xþ y; zÞ a d e f
C 1 2=m 1 x=2� y=2; x=2þ y=2; z Hall: �C 2y ðxþ y;�xþ y; zÞ a e
C 1 2=m 1 x=2þ y=2;�x=2þ y=2; z Hall: �C 2y ðx� y; xþ y; zÞ a f
P m m m x; y; z P m m m a b c d
P 1 2=m 1 �y; �x; �z P 2=m 1 1 a b
P 1 2=m 1 x; y; z P 1 2=m 1 a c
P 1 2=m 1 �x;�z;�y P 1 1 2=m a d
P �11 x; y; z P �11 a

† Hermann–Mauguin space-group symbols are used if possible; otherwise a Hall symbol is used (Hall, 1981; Hall & Grosse-Kunstleve, 2001).
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subgroups, the affine normalizer (IT96, x15) is used to

enumerate possible alternative settings for the unit cell. The

best monoclinic setting is defined as the one having its unique

cell angle nearest to 90�. For orthorhombic settings, the basis

with the smallest cell length a is preferred. If this does not lead

to a unique choice, the smallest length b is preferred, followed

by the smallest length c. Table 4 shows the resulting rotational

parts of the transformations to each subgroup of P 4=m m m

(the translational parts are identically zero throughout this

paper). As detailed elsewhere (Giacovazzo et al., 1992), the C

matrices can be used to transform atomic coordinates, Miller

indices and symmetry operations. Sample transformation rules

are shown in Table 6.

The indexing process (x3.1.1) establishes the six unit-cell

measurements (three cell lengths and three cell angles) for the

primitive reduced lattice. Establishing the correct Patterson

symmetry will impose additional metric constraints on the cell

dimensions, so that not all six of these dimensions will remain

independent. Formulae for expressing the constraints are

found in most crystallography texts (Blundell & Johnson,

1976), but are commonly shown in the conventional setting

AH. In contrast, the derivation of the symmetry operators in

xx3.1.2–3.1.4 is most conveniently performed in the original

reduced basis A. To work with metric constraints in the A

basis, we therefore use the following framework, which can be

used to derive the constraints in any basis, either in direct or

reciprocal space. The introduction of the metrical matrix G,

G ¼ AAT ¼
a � a a � b a � c
a � b b � b b � c
a � c b � c c � c

0
@

1
A ¼

g11 g12 g13

g21 g22 g23

g31 g32 g33

0
@

1
A;

ð9Þ

makes explicit the fact that there are initially six independent

quantities g = [g11 g12 g13 g22 g23 g33]. As shown in various

references (Table 2.E.1 of Giacovazzo et al., 1992), the

metrical matrix transforms under a general change-of-basis as

G0 ¼ CGCT; ð10Þ

where G0 is the modified metrical matrix resulting from the

transformation C. Metric constraints arise when we realise

that the metrical matrix must remain invariant under all of the

symmetry operations in the group. Focusing on just one

symmetry operation, W, and recognizing that the symmetry

operator can be treated as a change-of-basis matrix, we find

that

WGWT �G ¼ 0: ð11Þ
Expanding equation (11) in (3 � 3) matrix notation initially

gives nine separate equations. Accounting for the symmetric

nature of the metrical matrix (gpq = gqp) reduces this to just six

equations in the six components of g:

P3

p¼1

P3

q¼p

gpqð1� �pq=2Þðwpiwqj þ wqiwpj � �pi�qj � �qi�pjÞ ¼ 0;

i ¼ 1; 2; 3; i � j � 3: ð12Þ
wxy is a matrix element of W, and �xy is 1 if x = y, and 0

otherwise. To incorporate symmetry information from all the

operators of the space group, this enumeration of constraint

conditions is iterated over all NP non-centrosymmetric

operators. Separately applying equation (12) for each

operator W, we arrive at the final set of 6NP conditions

expressed in the form

MgT ¼ 0; ð13aÞ
where M is a (6NP � 6) matrix completely describing the

metric constraints. Since there are NP times as many rows as

independent variables in this system of equations, it is useful

to employ standard Gaussian elimination techniques to rear-

range equation (13a) into an equivalent but much simpler

expression. We thus compute the row echelon form U (e.g.

Strang, 1988; Boisen & Gibbs, 1990) containing zeros in all but

the first i rows (0 � i � 5), with the result that

UgT ¼ 0 ð13bÞ
describes the i metric constraints in the most compact fashion.

In the example of Table 4, symmetry operators for the

P 4=m m m subgroup produce the row echelon form

U ¼
1 0 0 �1 0 0

0 2 0 0 0 0

0 0 1 0 1 0

0 0 0 0 2 0

0
BB@

1
CCA: ð14Þ

This substitutes into equation (13b) to give the system of

equations

a � a� b � b ¼ 0; 2ða � bÞ ¼ 0;

a � cþ b � c ¼ 0; 2ðb � cÞ ¼ 0;
ð15Þ

reducing to the expected tetragonal metric constraints a = b; �,

�, � = 90�.
For computational purposes, we never take this last step to

express the constraints explicitly in terms of a, b, c, �, � and �,

as would be done for publication. Instead, the coefficients U

are used directly in a round of quasi-Newton refinement of the

A* basis vectors (x2.9 of Sauter et al., 2004). This allows us to
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Table 6
Conversion formulae for expressing crystallographic quantities in the
conventional setting.

Quantity to be transformed Transformation rule†

A, the matrix of direct-space basis components as
defined in equation (4)

AH ¼ C�1
H A

A*, the matrix of reciprocal-space basis components
as defined in equation (3)

A�H ¼ A�CH

u, an (atomic) position in direct space expressed in
fractional coordinates

uH ¼ CHu

h, Miller indices hH ¼ hC�1
H

W, a symmetry operator expressed in the direct-
space basis

WH ¼ CHWC�1
H

† In the equations shown, CH is the change-of-basis matrix for transforming quantities
expressed in the primitive, reduced basis into the conventional setting for subgroup H.
The subscript H on the left-hand side of the equation indicates quantities expressed in the
subgroup’s conventional setting.
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take the initial unit cell from indexing and adapt it to the

symmetry of any subgroup of interest.

3.3. Statistical detection of the point group

3.3.1. Scripted operation of standard programs. LABELIT

delegates certain calculations to programs in the CCP4 suite

(Collaborative Computational Project, Number 4, 1994),

version 5.0.2. Briefly, the orientation matrix A (x3.1.1) is

provided to MOSFLM (Leslie, 1999) for integration of Bragg

reflection intensities. A change-of-basis matrix CH is applied

with the program REINDEX, and Miller indices are re-sorted

with SORT. The program SCALA (written by Phil Evans,

MRC Laboratory of Molecular Biology, Cambridge, UK) is

then used for batch-to-batch scaling (Hamilton et al., 1965),

summation of partial intensities, and optionally (see below)

the merging of symmetry-related reflections. Command files

for running the CCP4 programs are automatically generated

and executed, and the output files are parsed to collect the

results. Bragg reflection data contained in MTZ-formatted

files (the standard interchange format for the CCP4 suite) are

manipulated through the iotbx.mtz library (Grosse-Kuns-

tleve et al., 2005).

3.3.2. Integration of the Bragg reflections. We must be

careful to distinguish between the normal process of data

integration used for structure solution (Leslie, 1999) and the

integration of reflections for determination of the Patterson

symmetry (Fig. 2). For structure solution, it is assumed that the

Bravais lattice is known ahead of time. The positions of Bragg

reflections can be predicted with high accuracy because (a) the

initial A basis is symmetry-adapted with the proper metric

constraints, and (b) the metric constraints are used again in a

cycle of postrefinement to improve the model further (Ross-

mann et al., 1979). For symmetry determination, we can

assume no prior knowledge about the metric symmetry. Since

the unit-cell model is not optimal, we do not know if weak

Bragg measurements in the highest-resolution shells of reci-

procal space are due to truly weak intrinsic diffraction, or to

inaccurate spot positions. We therefore set an unusually

stringent criterion for accepting data, truncating the diffrac-

tion pattern at a resolution limit where the average I=�ðIÞ
ratio is 5.0 (treating both partially and fully recorded reflec-

tions as a single set). Once the Patterson symmetry is deter-

mined, the data are reprocessed for structure solution using

the proper Bravais lattice.

3.3.3. Track 1: traditional calculation of merging relia-

bility. To determine if global indicators of data quality can be

used to distinguish among possible point groups, the Rmerge

statistic [equation (1)] was calculated for each centrosym-

metric subgroup. For this calculation, the data are integrated

only once, but are then reindexed, scaled and merged between

1 and 30 separate times depending on the apparent Bravais

lattice (see Table 5). Rmerge values calculated with SCALA

indeed reveal the correct symmetry in many cases, but the

results (x4) make it clear that global indicators fail to give an

accurate picture when some of the subgroup operators are

poorly represented in the data set. The Track 1 approach is

therefore incorporated into LABELIT for research purposes

only, not as a recommended feature.

3.3.4. Track 2: novel calculation of symmetry-operator

reliability. When calculating operator-specific statistics, we

wish to avoid the computationally intensive step of executing

the program SCALA separately for each possible subgroup.

Furthermore, experience has shown that there may not be

enough information to scale the data in low-symmetry

subgroups when the diffraction data in question are from a

small incomplete data set (i.e. data collected from a small

angular rotation range). For these reasons, batch-to-batch

scaling and summation of partial intensities is performed once

only, in the metric supergroup (Fig. 2). Many cases were

examined in which the metric supergroup contained symmetry

operations not present in the actual data, and it was found that

the resulting batch-to-batch scale factors were still suitable for

deriving the true point group.1

In contrast to the Track 1 procedure above, Track 2 does

not ask SCALA to merge symmetry-related reflections.

Instead, the command output unmerged original is

issued, causing SCALA to list the scaled, summed unmerged

intensities with their original Miller indices. It is therefore

possible to evaluate the expression

ðhb ¼ haWÞ or ðhb ¼ haWÞ ð16Þ

to test whether two Miller indices ha and hb are related by a

symmetry operation W. Note that the ‘original’ Miller indices

referred to in this context have already been transformed

during the REINDEX step into the conventional setting of the

metric supergroup. Therefore, the proper change-of-basis

matrix CM for this transformation must also be applied to the

set of possible symmetry operations (x3.1.4) using the rule

listed in Table 6.

4. Application to experimental data

The public availability of data from the NIH-funded Protein

Structure Initiative projects provides a testing ground for new

processing methodologies like those outlined above. We

evaluated the two symmetry determination methods (Track 1

and Track 2) using 326 data sets collected by the Joint Center

for Structural Genomics (JCSG; Lesley et al., 2002), provided

to us by Ashley Deacon. Data sets were included from both

published structures and from studies terminated for various

reasons. Each data set was indexed based on two images

collected at rotational settings 90� apart. Reliability statistics

were calculated on nested subsets of images, beginning with

the data set’s first image. One experiment is highlighted below

because it illustrates a situation where the Track 2 approach is
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1 For all SCALA runs, outlier measurements were rejected if they deviated by
more than four standard deviations from the weighted mean I(hkl); however,
it is not strictly necessary to reject outliers in order to use supergroup scale
factors, even when the supergroup symmetry is higher than the true symmetry.
We speculate that the problem of Hamilton et al. (1965) batch-to-batch scaling
is so overdetermined (e.g. in Table 7, 	30000 independent measurements are
used to determine 	30 scale factors) that scaling is rather insensitive to the
presence of extra symmetry operators.
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superior for timely discovery of the Patterson symmetry.

Additional results will be presented elsewhere.

4.1. Cases where symmetry-operator analysis helps resolve

symmetry ambiguity

JCSG collected diffraction data from two crystal forms of

hypothetical protein 29342463 (EF0366) from Enterococcus

faecalis V583. The first form was solved at 2.52 Å resolution in

space group P 65, with one protomer per asymmetric unit

(Protein Data Bank accession code 1VPY). The second data

set was not initially amenable to analysis. The diffraction

pattern could be indexed and integrated, but the choice

between the Patterson symmetries P 4=m and P m m m was not

clear. Scaling and merging under P 4=m resulted in large

numbers of measurements being rejected as outliers (data not

shown). However, the fact that the Rmerge for P 4=m (Table 7b)

was of intermediate value between those of obviously correct

(P �11) and incorrect (P 4=m m m) symmetries left open the

question of whether there were other systematic problems

with the data set. Because of this ambiguity and the fact that

the crystal diffracted only to a limit of 3.10 Å, JCSG’s initial

efforts were focused on the better-diffracting crystal form #1.

Since a goal of our work is to develop automated proce-

dures for choosing among candidate Patterson symmetries, it

was of interest to us to investigate in more detail the symmetry

of the poorer-diffracting crystal form #2. The evidence from

outlier rejections and merging reliability statistics argues

against P 4=m, but it is difficult to combine this information

into a suitable scoring function. After developing equation (2),

we realised that the analysis based on individual symmetry

operators (Table 7a) offers the clearest indication that the

correct Patterson symmetry is P m m m. Once the data are

integrated and scaled, it only takes an additional 4 s of CPU

time (on a 2.8 GHz Xeon processor) to calculate Table 7(a), so

Rsymop is a very practical addition to existing methods.

Knowing the correct Patterson symmetry allowed us to

solve the structure of crystal form #2 in space group P 21 21 21,

using the method of molecular replacement. The 1VPY

structure was used as a replacement model, and two protomers

were located in the asymmetric unit, forming a non-crystal-

lographic dimer. The solved structure shows that the near

equality of the a and b axis lengths is pure coincidence; the

unit-cell contents do not display pseudo fourfold symmetry.

Full model building and refinement was conducted in colla-

boration with JCSG (details to be published elsewhere), and

the model deposited under PDB accession code 1ZTV.

Importantly, 97% of the protomer’s residues are present in the

1ZTV model, in contrast to only 87% of residues in 1VPY,

which lacks two hairpin turns and the C-terminal. Thus in

hindsight, the additional structural detail observed warrants

the extra effort to identify the space group, despite the poorer

diffraction limit of crystal form #2.

Another JCSG structure was solved from a primitive

orthorhombic crystal with a pseudo-tetragonal lattice, which

caused initial difficulty identifying the symmetry (PDB

accession code 1VR6). The structure was solved before the

symmetry-operator analysis was developed for point-group

assignment. Afterwards, it was confirmed that Rsymop analysis

easily gives the correct symmetry.

4.2. Early identification of the point group through

symmetry-operator analysis

A goal of many beamline software developers is to establish

automated protocols to optimize the data collection strategy.

The result of x4.1 clearly shows that incorporation of Rsymop

analysis in these protocols will increase the reliability of point-

group determination. We now ask whether an answer can be

obtained quickly: before the crystal has undergone too much

radiation exposure, which could produce radiation damage,

and before too much time has elapsed, which would make the

process inefficient. Fig. 3 explores how well Rsymop can reveal

the point group of 1ZTV as the data collection progresses. In

the interval shown (data frames 4–90), it is always possible to

distinguish incorrect subgroups like P 4=m m m and P 4=m
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Table 7
Symmetry analysis of the full 1ZTV data set out to a 3.37 Å limit.

The full data set consists of 90 1� oscillation images; the incident wavelength is
0.979 Å. The P m m m diffraction pattern is 99.4% complete out to the limiting
resolution of 3.10 Å. Indexing, integration and scaling took 366 s, single-
threaded on a 2.8 GHz 32-bit Xeon machine with 2.0 Gbyte memory running
under RedHat Linux 8.0. The images contained 3072 � 3072 pixels and were
recorded in 18 Mbyte files.

(a) Correlation of measured intensities.

Operator
pair(s)

Representative
operator(s), W NW

Rsymop

(%)

a 1 19618 5.5
b ½100�2 4720 7.9
c ½010�2 12422 9.2
d ½001�2 29497 5.9
e ½110�2 30337 42.8
f ½�1110�2 36525 43.7
g, h† ½001�41;�1 18717 44.9

(b) Quality indicators for possible subgroups.

Subgroup
Operators
present

Maximum
Rsymop

(%)

Rmerge (%)
(with outlier
rejection†)

Rmerge (%)
(no outlier
rejection‡)

P 4=m m m a b c d e f g h 44.9 44.0 42.2
P 4=m a d g h 44.9 9.7 17.5
C m m m a d e f 43.7 41.9 40.1
C 1 2=m 1 a e 42.8 40.6 35.6
C 1 2=m 1 a f 43.7 31.0 37.9
P m m m§ a b c d 9.2 7.4 7.5
P 1 2=m 1 a b 7.9 5.7 5.8
P 1 2=m 1 a c 9.2 6.1 6.2
P 1 2=m 1 a d 5.9 6.9 7.0
P �11 a 5.5 5.4 5.5

† Rotational operators ½001�41 and ½001�4�1 are grouped together because they are mutual
inverses, respectively representing counterclockwise and clockwise quarter-turn rotations
about [001]. The operators must be considered together in order to construct the
complete list of NW pairs of Miller indices related by the fourfold axis. Similar groupings
must be made in other metric supergroups containing mutually inverse pairs of three- and
sixfold operators. This is not an issue for one- and twofold operators because they are
self-inverses. † Scaling and merging performed by SCALA separately for each
subgroup. ‡ Supergroup scaling performed exactly as described in x3.3.4, with Rmerge

then calculated strictly with equation (1), with no further outlier rejections. § Correct
subgroup.

‡ x

{

‡

x
{
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from subgroups that are consistent with the data like P m m m

and P �11. Remarkably, the symmetry can be determined after

only 4� of angular rotation, at a point where only 10% of the

unique reflections have been measured. Based on both

criteria, namely radiation exposure and required CPU time, it

would be feasible to pause after frame 4 to optimize the data

collection strategy.

Details of the symmetry analysis using frames 1–4 are

presented in Table 8. The number of Miller index pairs

available for comparison is quite small: for example NW is only

1 for operator f, 3 for operator a, and 6 for operator e. With

small populations, there is a danger that the resultant Rsymop

values may be biased by sampling error. Yet we do not wish to

be too cautious, since it may be possible to prove or disprove a

point group from a few observations. Based on results from all

326 data sets considered, the following heuristic was estab-

lished: for most Bravais lattices, no Rsymop is calculated if

NW < 5 (but for operator pair a, the cutoff is NW < 3).

Therefore, in Table 8(a), no Rsymop is listed for operator pair f.

However, if the Bravais lattice is cubic or primitive hexagonal,

it is more difficult to obtain the requisite sample sizes for the

large number of symmetry operators, so a more permissive

cutoff of NW < 2 is used. In the future we plan to replace these

simple heuristics with a more rigorous statistical treatment so

that an error estimate can be placed on Rsymop.

Point-group determination depends on the ability to

conclude from the Rsymop(W) statistics that certain symmetry

operators (but not others) describe true correlations in the

observed reflections. In the case illustrated in Table 8(a) there

is an obvious distinction between those operators permitted

by the data (a, b, c and d), and those ruled out (e, g and h). In

the context of beamline automation, a simple clustering

procedure can perform this analysis. Heuristic rules were

implemented to divide the Rsymop values into one or two

clusters: one cluster if all values are acceptably small, and two

clusters otherwise. Parameters in the rules were adjusted in

such a way as to maximize the ability to select the correct point

group in the JCSG data sets, with as few frames as possible

taken from the beginning of each data set. The resulting code

from this trial-and-error process is distributed with LABELIT

in the file track2_cluster.py. A regression test is also

included to allow interested users to experiment with alter-

native criteria. Under some conditions, it is not possible to

divide the Rsymop values into two clear groups, and conse-

quently no conclusions can be made about the point group.

Such cases arise when the incomplete angular rotation of a

crystal gives an insufficient sample size (NW) of Miller index

pairs. Furthermore, of the 326 successfully integrated data sets

we considered, about 1% contained data of such poor quality

that the symmetry could not be identified. A much larger

concern for beamline automation (but not within the scope of

this paper) is to recognize systematically cases where indexing

and integration are not successful. We found several dozen

additional data sets where various pathologies such as high

mosaicity, crystal splitting, or radiation damage rendered the

data useless.

Once the sets of permitted and disallowed operators are

listed ({a, b, c, d} and {e, g, h} respectively, in this case),

LABELIT selects the correct subgroup by logical inference. In

this example, Table 8(b) shows that P m m m is the only

possible subgroup. It is not true that a subgroup can be

selected simply if it has a low maximum Rsymop value; this is a

necessary but not sufficient condition. For example, even

though the second C 1 2=m 1 subgroup has a maximum Rsymop

of 3.3% (due to the identity operator a), the fact that it lacks

the permitted operators b, c and d excludes it from consid-

eration. Interestingly, even though the status of operator f is
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Table 8
Symmetry analysis of the incomplete 1ZTV data set out to a 3.37 Å limit.

Analysis of the first four 1� oscillation images, at which point the P m m m
diffraction pattern is 10% complete. The computations shown (including
indexing, integration and scaling) took 24 s under the same conditions noted in
Table 7.

(a) Correlation of measured intensities.

Operator
pair(s)

Representative
operator(s),
W NW

Rsymop

(%)

a 1 3 3.3
b ½100�2 131 5.6
c ½010�2 24 4.2
d ½001�2 115 4.2
e ½110�2 6 91.5
f ½�1110�2 1 –
g, h ½001�41;�1 12 78.5

(b) Quality indicators for possible subgroups.

Subgroup
Operators
unknown

Operators
permitted

Operators
ruled
out

Maximum
Rsymop

(%)

P 4=m m m f a b c d e g h 91.5
P 4=m a d g h 78.5
C m m m f a d e 91.5
C 1 2=m 1 a e 91.5
C 1 2=m 1 f a 3.3
P m m m † a b c d 5.6
P 1 2=m 1 a b 5.6
P 1 2=m 1 a c 4.2
P 1 2=m 1 a d 4.2
P �11 a 3.3

† Correct subgroup.

Figure 3
Ability to establish the point group of the 1ZTV crystal from nested
subsets of the full data. The maximum Rsymop value is plotted for key
subgroups of interest: P 4=m m m (squares); P 4=m (triangles); P m m m
(circles); P �11 (diamonds). Data completeness computed in the true
Patterson group (P m m m) is shown as a line without symbols.
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not revealed directly by the experiment, it can be inferred:

knowing that {a, b, c, d} are allowed, {e, g, h} are disallowed,

and that the subgroup must be in the list in Table 8(b), implies

that f is disallowed too. In a similar fashion, the subgroup

could still be uniquely identified even if Rsymop is known for

only two of the three operators b, c and d.

4.3. Correlation of Friedel pairs

The heuristic process of dividing the symmetry operators

into one or two clusters treats all operator pairs the same with

one important exception: a, the operator pair consisting of the

identity 1 and inversion �11. It is clear that operator pair a must

be categorized with the ‘permitted’ cluster: Rsymop(1) reflects

the experimental uncertainty in making repeat measurements

of the same reflection, while Rsymop(�11) includes additional

differences due to anomalous dispersion. If the value of

Rsymop(a) (i.e. all repeat measurements and Friedel pairs taken

together) clusters with the ‘disallowed’ operators, or if it

exceeds a certain absolute value (e.g. 20%), we must conclude

either that the diffraction pattern is misindexed or that there is

some other serious measurement problem.

In the 1ZTV data set, the Rsymop(a) value is slightly smaller

than that for any other operator (see Tables 7a, 8a, and Fig. 3).

Indeed, this is generally true throughout the collection of

JCSG data sets analyzed. These data sets all have angular

rotation ranges of less than 180�, as is the normal protocol for

collecting native data when there is no intention of analyzing

anomalous differences. Consequently, there are no repeat

measurements of a given Bragg spot; the only contribution to

Rsymop(a) is from Friedel pairs. A consideration of Bragg

diffraction geometry helps to explain why Friedel pairs are

better correlated than other types of symmetry-related pairs.

To illustrate, Fig. 1 shows a Miller index hkl in diffracting

position on the trailing (concave forwards) edge of the Ewald

sphere. The Friedel mate �hh �kk�ll reaches the diffracting position

on the sphere’s leading (convex forwards) edge after the

crystal has been rotated by an angle

�’ ¼ 2 sin�1ð�=2dÞ; ð17Þ

where � is the X-ray wavelength and d is the {hkl} lattice

spacing. Equation (17) implies that Friedel pairs are highly

correlated for two distinct reasons, depending on whether the

total angular rotation producing the data is large or small. For

large angular rotations (e.g. the nearly complete 1ZTV data

set of Table 7), the Friedel pairs always come from close ’
settings; specifically �’ � 16.7� in Table 7, even though the

full range of crystal rotation is 90�. It is reasonable that the

Friedel pairs have the best correlation because sources of

error that depend on the crystal orientation, such as absorp-

tion of the incident beam, vary the least. For small angular

rotations (e.g. the incomplete data from a very thin wedge in

Table 8), the Friedel pairs all come from low resolution shells,

in particular d
 14.0 Å for this 4� rotation. The low-resolution

Friedel pairs are therefore likely to consist of brighter spots,

having relative measurement errors that are smaller than

average.

A different phenomenon arises when the crystal is rotated

through an angle greater than 180�, as is done for ‘inverse-

beam’ measurement of Bijvoet pairs (Hendrickson & Ogata,

1997). Pairings arise from the same edge (either leading or

trailing) of the Ewald sphere, and the relationship between the

incident beam and the crystal lattice is nearly identical when

each mate is in diffracting position. If such data are included,

this further reinforces the observation that the inversion

operator produces the lowest Rsymop values.

5. Conclusion

When selecting the proper Laue class and Patterson symmetry,

it can be misleading to compare statistics that aggregate all

reflections, particularly when the data set is incomplete. If

potential symmetry relations are poorly sampled in the

experimental data, there may be little hint from global

statistics such as Rmerge and I=�ðIÞ that a high-symmetry group

is incorrect. The clearest method is to consider whether the

data support the individual symmetry operators that comprise

the symmetry group. While existing programs implicitly use

symmetry during the data-merging process, available software

does not generally present this information in a way that

allows particular symmetry operators to be clearly accepted or

rejected. In contrast, the calculation of Rsymop(W) [equation

(2)], along with the enumeration of all subgroups that are

metrically possible (Table 4), together give a straightforward

framework for deducing the symmetry unambiguously.

LABELIT generates the required output (Tables 7 and 8) in

response to a single command, without the necessity for

separate jobs to evaluate each possible symmetry.

For future beamline automation efforts, it will be important

to be able to identify the symmetry as early as possible in the

data acquisition process. The Rsymop method appears to be

useful in this regard: an analysis of 326 data sets from the

JCSG suggests that the Patterson symmetry can generally be

determined after a narrow angular wedge of data has been

collected. For the monoclinic crystal family, an average rota-

tion of 9� is required; for the orthorhombic crystal family, 6�;
and for higher-symmetry families, 5�.

The tools presented above can be used to confirm a

Patterson symmetry assignment with high confidence. In order

to substantiate the published symmetry, it would be most

advantageous to archive unmerged intensity data with original

Miller indices, in a public database such as the PDB (Berman

et al., 2000). We favor this as an addition to, not as a substitute

for, the more common practice of archiving merged data.

In the future, we plan to test whether the Rsymop method can

be applied to the detection of pseudosymmetry; e.g. in situa-

tions where an apparent symmetry breaks when investigated

at high resolution.

6. Software availability

Non-commercial users may download LABELIT at the URL

http://cci.lbl.gov/labelit. Metric symmetry and Patterson
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symmetry can be determined, respectively, with the commands

labelit.index and labelit.rsymop. As presently imple-

mented, symmetry is analyzed without considering the possi-

bility of merohedral twinning. Detailed instructions are posted

on the Web site. Code to reproduce the tables in this paper is

given in the subdirectory labelit/labelit/publications/rsymop.
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