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A number of conventions for the parameterization of atomic anisotropic

displacements are used in the literature and in crystallographic programs. Here

we summarize the commonly used conventions, with a special emphasis on their

application in macromolecular crystallography. We then describe a new software

toolbox for the handling of the various parameterizations of atomic anisotropic

displacements and their interconversion. All algorithms are integrated into the

freely available Computational Crystallography Toolbox.

1. Introduction

When high-resolution diffraction data are available, crystal

structures are often modeled using atomic anisotropic

displacement parameters (ADPs) to describe thermal motion

and possible static displacive disorder. In the ®eld of small-

molecule crystallography, ADPs have been routinely used for

decades (Trueblood et al., 1996). Until recently, the use of

ADPs in the re®nement of macromolecular structures has

been rare. However, as a result of many improvements in data

collection technology, high-resolution data that enable the

re®nement of ADPs are increasingly becoming available for

macromolecules. This is re¯ected by a rapid growth in the

number of structures with ADPs deposited in the Protein Data

Bank (PDB) (Berman et al., 2000) (Fig. 1).

As we show in x2, a number of conventions for the para-

meterization of anisotropic displacements are currently in use.

These different conventions present a signi®cant potential for

confusion. For example, the ADPs found in ®les that follow

the PDB format (http://www.rcsb.org/pdb/info.html) follow a

different convention with respect to the ADPs found in ®les

that follow the mmCIF format (http://pdb.rutgers.edu/mmcif/).

If this is not taken into account, there exists a possibility that

the ADPs can be misinterpreted, leading to incorrect analysis

of a structure. Therefore, a library for the conversion between

the different parameterizations is a valuable tool. We have

implemented such a library by adding the ADP toolbox

(adptbx) to the Computational Crystallography Toolbox

(cctbx) (Grosse-Kunstleve et al., 2002). In addition to the

conversions, the library facilitates the computation of Debye±

Waller factors, the handling of symmetry restrictions, and the

determination of the eigenvalues and eigenvectors of aniso-

tropic displacement ellipsoids. In the following section, we will

summarize the commonly used conventions for ADPs in the

literature, computer programs and databases. This is followed

by a description of the adptbx. Further documentation is

available online (http://cctbx.sourceforge.net/).

2. Commonly used conventions for the
parameterization of atomic anisotropic displacement
parameters

The mean-square displacements that de®ne the probability

density functions of atomic displacements are commonly

parameterized as a trivariate Gaussian. The effect of the

atomic displacements enters into the structure-factor calcu-

lation as the Debye±Waller factor T(h), where h is a column

vector with the Miller indices of a Bragg re¯ection. The

fundamental expression for T(h) is

T�h� � exp
�ÿ 2�2h�h � u�2i�; �1�

where u is a row vector with the components of the displa-

cement vector (Trueblood et al., 1996, equations 14±22

Figure 1
Histogram of structures that were deposited in the Protein Data Bank
(PDB) with ANISOU cards, grouped by year, based on the PDB holdings
on 16 October 2001. The dates used for the histogram are the days of
deposition as found on the PDB HEADER card. The total number of
structures with ANISOU cards is 306. 237 structures were re®ned with
SHELX (white bars) (Sheldrick & Schneider, 1997), 64 structures with
REFMAC (gray bars) (Murshudov et al., 1997), and ®ve structures with
three other programs (black bars) (see the references archived in the
PDB under the access codes 7bna, 1etl, 1etm, 1etn and 1ejg).
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therein). Equation (1) takes on different forms depending on

the basis vectors to which the diffraction and displacement

vectors are referred. If the diffraction vectors are referred to

the basis of the crystallographic reciprocal lattice, and the

displacement vector to the crystallographic direct lattice,

equation (1) takes on the form

T�h� � exp�ÿ2�2htU�h�; �2�

where ht is the transpose of h (i.e. a row vector), and U* is a

symmetric second-rank tensor, typically represented as a

symmetric 3 � 3 matrix of real numbers. This de®nition of U*

was established by Giacovazzo (1992) and Murshudov et al.

(1999). [Bricogne (2001) uses the notation Q for the same

tensor.] The elements of U* are dimensionless mean-square

displacements, analogous to fractional coordinates. This de®-

nition of ADPs can be used directly in the structure-factor

calculation (without explicitly involving the unit-cell para-

meters) and is the most suitable parameterization for estab-

lishing compatibility with the site-symmetry for special

positions (see x3.3).

All other commonly used conventions for the para-

meterization of anisotropic displacements are most conve-

niently de®ned through tensor transformations. For example,

let A be an orthogonalization matrix that transforms the

fractional coordinates xfrac with respect to a crystallographic

basis system to coordinates xcart with respect to a Cartesian

basis. Application of the transformation rules listed by

Giacovazzo (1992, section 2.E therein) leads to

Ucart � AU�At; �3a�
U� � Aÿ1Ucart�Aÿ1�t; �3b�

where At is the transpose of A, Aÿ1 is the inverse of the system

A [the elements of A have dimension (length)] and Ucart is the

anisotropic displacement tensor with respect to the Cartesian

basis. The elements of Ucart have dimension (length)2. [Ucart

corresponds to UC
jl of Trueblood et al. (1996).]

The ANISOU cards of PDB ®les de®ne the elements of

Ucart. The parameterization of anisotropic displacements with

respect to a Cartesian basis system is useful because the

eigenvalues of Ucart are directly equivalent to the mean-square

atomic displacements in the principal directions of the corre-

sponding ellipsoid (see x3.4) and are also most suitable for

generating graphical representations of such ellipsoids [as

performed e.g. by the ORTEP program (Burnett & Johnson,

1996)].

In small-molecule crystallography, the dimensionless basis

(a*a, b*b, c*c) is widely used for the parameterization of

anisotropic displacements (Trueblood et al., 1996, equations

23±25 therein; a*, b* and c* are the lengths of the basis vectors

of the crystallographic reciprocal lattice; a, b and c are the

basis vectors of the crystallographic direct lattice). To our

knowledge, this ad hoc basis system is only used for the

parameterization of anisotropic displacements. It leads to the

relations

Ucif � Nÿ1U��Nÿ1�t; �4a�
U� � NUcifN

t; �4b�
with

N �
a� 0 0

0 b� 0

0 0 c�

0
@

1
A: �5�

The components of the tensor Ucif have dimension (length)2.

[Ucif corresponds to Ujl of Trueblood et al. (1996)]. This

convention for ADPs was adopted in the de®nitions of both

the CIF (http://www.iucr.org/iucr-top/cif/) and the mmCIF

dictionaries. For clarity, in this paper and in the adptbx, the

parameters according to the CIF de®nition (dictionary item

aniso_U) are consistently labeled as Ucif, and the parameters

according to the PDB convention (ANISOU cards) are

consistently labeled as Ucart. Note that substituting equation

(4b) into equation (2) results in the lengthy expression found

in the CIF dictionary and in many program descriptions [e.g.

the SHELX manual (Sheldrick & Schneider, 1997)].

For unit cells with orthogonal basis vectors, Ucif is exactly

equivalent to Ucart. Unfortunately, for unit cells with angles

other than 90�, the mean-square displacements are convoluted

with the metric of the crystallographic basis. To determine the

principal mean-square displacements for the general case, it is

therefore necessary to convert Ucif to Ucart. The conversion

laws are easily obtained by combining equations (3) and (4).

The differences in the parameterizations introduced so far

are exclusively in the choice of the basis systems. Alternative

parameterizations found in the literature are convoluted with

factors of �. The ®rst example is the de®nition

b � 2�2U� �6�
which is used by the SIR program (Burla et al., 2000) [and

corresponds to �jl of Trueblood et al. (1996)]. The second

example is the de®nition

B � 8�2U; �7�
which is used in the de®nition of the CIF and mmCIF

dictionaries [the factor 8�2 appears in the expression for the

Debye±Waller factor given isotropic displacement parameters

(see Trueblood et al., 1996, equation 13 therein)]. The use of B

is explicitly discouraged by Trueblood et al. (1996) and in the

de®nitions of the CIF and mmCIF dictionaries. However, to be

able to process input from sources that use B, support for this

is included in the adptbx.

3. Overview of the adptbx and other related parts of
the cctbx

3.1. Conversions

The adptbx supports the simple conversions between both

isotropic and anisotropic `U' and `B' [equation (7)], inde-

pendently of the basis system that is used. Further supported

are all possible conversions between U*, Ucart, Ucif and b. This

results in a total of 12 conversion functions. However, only the

conversions according to equations (3) and (4) are generic
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implementations. The other conversions are implemented as

nested function calls of the generic conversions. This mini-

mizes the amount of source code, and the relations between

the different parameterizations of the anisotropic displace-

ments are also easy to follow. It should also be noted that

modern optimizing compilers generate code that is as ef®cient

at runtime as manually coded speci®c conversion functions.

Eight additional functions are provided for the conversions

between the anisotropic Ucart, U*, Ucif and b, and the equi-

valent isotropic Uiso. The isotropic equivalent of the

anisotropic displacement tensor is de®ned as the mean of

the mean-square displacements in the principal directions

of the anisotropic displacement ellipsoid, which is equivalent

to the mean of the eigenvalues. In the Cartesian basis system,

the trace of the Ucart tensor is equivalent to the sum of the

eigenvalues (see e.g. Giacovazzo, 1992, p. 188 therein).

Therefore, the equivalent Uiso is de®ned by the simple relation

Uiso � 1
3 trace �Ucart�: �8�

The conversion from Uiso to Ucart is equally straightforward:

Ucart �
Uiso 0 0

0 Uiso 0

0 0 Uiso

0
@

1
A: �9�

The conversions between U*, Uuvrs and b, and the equivalent

Uiso are implemented as the combination of conversions

between e.g. U* and Ucart, and Ucart and Uiso. In this way the

complicated expressions for equivalent Uiso that are often

found in the literature are avoided.

3.2. Computation of the Debye±Waller factor

Functions are provided for the computation of the Debye±

Waller factor according to equation (1) given U*, b, Ucart, Ucif,

Uiso and Biso. Only two functions are generic implementations

(U*, Biso). The others are implemented as a conversion

followed by a call to the suitable generic function.

3.3. Handling of symmetry restrictions for special positions

For atoms on special positions, the SiteSymmetry class

(Grosse-Kunstleve & Adams, 2002) in the Space Group

Toolbox of the cctbx was extended to test whether a given

anisotropic tensor U* is compatible with the site symmetry.

The anisotropic displacement ellipsoid must remain invariant

under the application of each of the symmetry operations of

the site-symmetry group. This leads to the condition

U� � RU�Rt; �10�
where R is the rotation part of a given symmetry operation

(see e.g. Giacovazzo, 1992).

A second function that was added to the SiteSymmetry class

applies Wigner's theorem (Giacovazzo, 1992, p. 189 therein) to

derive a tensor

U�
inv � 1

n

Pn
s�1

RsU
�Rt

s; �11�

that is invariant under the n operations of the site-symmetry

group even if U* is not. This is useful to compensate for

rounding errors arising from limited input precision, and

possibly to compensate for approximations and rounding

errors in re®nement algorithms.

3.4. Determination of eigenvalues

The eigenvalues of Ucart are directly equivalent to the

mean-square atomic displacements in the principal directions

of the anisotropic displacement ellipsoid. Since the anisotropic

displacement tensor is a symmetric matrix, all eigenvalues are

real. The eigenvalues � are determined as the three real roots

of the cubic equation

Ucart ÿ �I
�� �� � 0; �12�

where I is the identity matrix. The solutions are obtained

analytically using Cardan's formula (see e.g. Spiegel & Liu,

1998).

If any of the three eigenvalues is less than or equal to zero,

the Ucart tensor is not positive de®nite and Ucart cannot be

represented as an ellipsoid. Tests for this condition are

included in the adptbx.

3.5. Determination of eigenvectors

The eigenvectors of Ucart de®ne the principal directions of

the anisotropic displacement ellipsoid. Since the anisotropic

displacement tensor is a symmetric matrix, the eigenvectors

can be chosen to be orthonormal. The eigenvectors are

determined using a simple method of successive approxima-

tions that is speci®c for 3 � 3 matrices, as outlined by Nye

(1992, pp. 165±168 therein).

3.6. Software technology used

The adptbx is implemented in ISO C++ (International

Standardization Organization et al., 1998). This programming

language supports object-oriented design, name-spaces,

exception handling and parameterization of types (templates).

These features facilitate the design of libraries that are

reusable and maintainable. For example, all functions in the

adptbx are parameterized (templated) by the ¯oating-point

type. It is therefore possible to choose between single preci-

sion and double precision. It is also possible to use multiple

¯oating-point precisions simultaneously in the same program.

Importantly, this is achieved without duplicating source code,

and without impacting the runtime performance.

The adptbx may be used as a pure C++ library. However, for

maximum ¯exibility, bindings to the high-level Python

scripting language are provided. The bene®ts of this tight

combination of a statically typed compiled language (C++)

with a dynamically typed interpreted language (Python) are

discussed in depth by Grosse-Kunstleve et al. (2002). A simple

example script (analyze_adp.py) that demonstrates the use
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of the adptbx is provided online in the `examples' directory of

the cctbx (http://cctbx.sourceforge.net/).

4. Conclusion

We hope that the summary of commonly used conventions for

the parameterization of atomic anisotropic displacements in x2
is a useful reference for crystallographers, in particular

macromolecular crystallographers, who are unavoidably

presented with at least two different parameterizations: the

PDB convention (Ucart) and the mmCIF convention (Ucif).

We have introduced practical tools for the handling of

ADPs, which are accessible through a scripting language

(Python). This language was designed speci®cally for teaching

programming concepts and the tools are therefore very

approachable. Their integration into the cctbx creates a

powerful resource for handling the diverse data representa-

tions used by crystallographic software. At the same time,

their modular, highly reusable design, in combination with an

Open Source license, makes them ideal for inclusion into large

integrated software systems.
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