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ABSTRACT 
Crystallographic methods using experimental diffraction 

data have produced about 85% of the macromolecular 
structures in the Protein Data Bank. Before deposition, nearly 
all crystal structures are refined with gradient-driven 
optimization techniques. Refinement is typically performed 
with iterative local optimization methods. A common problem 
is convergence to local minima. Reparameterization of the 
model in torsion angle space reduces the number of parameters. 
This in itself can help to escape from local minima. 
Combination with rigid-body dynamics algorithms results in an 
important tool for sampling conformational space. This paper 
presents the torsion angle refinement and dynamics algorithms 
implemented for the phenix.refine program and the results of 
various tests. 

 
INTRODUCTION 
 The rapid growth of known macromolecular structures, 
commonly deposited in the Protein Data Bank (PDB) (1), has 
been fueled in large part by the use crystallographic methods. 
Crystals of macromolecules are subject to X-ray or neutron 
radiation to produce diffraction data. These experimental data 
are the input for diverse, complex structure determination 
methods that yield an approximate, initial structural model. 
Eventually, all models are subject to refinement, which is the 
process of optimizing the fit of diffraction data calculated 
directly from the model to the experimental observations. 

Early crystallographic refinement procedures used least-
squares methods. Today, more sophisticated maximum-
likelihood methods are in wide use (2). Both approaches can be 
combined with iterative gradient-driven minimization methods, 
using gradients of the least-squares or maximum-likelihood 
function with respect to the model parameters. Improved 
estimates of the model parameters are commonly obtained with 

quasi-Newton or conjugate-gradients methods (3). Cycles of 
model updates and gradient calculations are repeated until the 
fit is of sufficient quality to answer the scientific questions 
motivating the experiment. 

In conventional refinement, the number of model 
parameters is a direct linear function of the number of atoms in 
the macromolecule. For example, when refining Cartesian 
atomic coordinates, the number of model parameters is three 
times the number of atoms. The number of atoms in 
macromolecules ranges from a few hundred to hundreds of 
thousands (the median number of atoms in the PDB is about 
2900 atoms). Parameter spaces of this size preclude the use of 
global optimization techniques; therefore iterative local 
optimization methods, as outlined above, are typically used. 
This implies that the gradient-driven methods converge from 
the starting estimate of the model parameters to the next local 
minimum. Almost universally, prior chemical knowledge has to 
be included in the target function in order to arrive at models 
that both fit the data and make chemical sense. To this day, 
generally time-consuming manual intervention is essential. 

Another important reason for using prior chemical 
knowledge is that the resolution of the experimental data is 
often limited. For macromolecular structures, atomic-resolution 
data (around 1.0 Å) are available only in exceptional cases. 
Resolutions around 2.5 Å are more usual, and resolutions of 3.5 
Å are still common. Some biologically important structures 
were refined with significantly lower resolution data, for 
example the ribosome (4). 

Torsion angle dynamics was first introduced into the 
context of macromolecular structure refinement by Rice and 
Brunger (5). A major motivation was to aid refinement of low-
resolution structures. In torsion angle space, the parameter-to-
observation ratio is reduced by a factor of approximately seven 
compared to a model with Cartesian atomic coordinates, or 
even more if certain torsion angles are fixed based on chemical 
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knowledge. Rice and Brunger used torsion angle dynamics 
combined with simulated annealing as a tool to escape from 
local minima encountered in gradient-driven minimization. 

Our interest in torsion angle refinement and dynamics is 
connected to the development of phenix.refine, the refinement 
module of the PHENIX project (5). Integration of torsion angle 
parameterization in the existing suite of phenix.refine 
algorithms is expected to enhance the capabilities for low-
resolution refinement. We also anticipate benefits simply from 
moving between Cartesian and torsion angle refinement, since 
the energy landscapes as seen by the minimizer have different 
local minima. 

In this paper, we describe our implementation of the 
dynamics engine developed for phenix.refine. It is based on the 
recursive Articulated-Body Forward Dynamics algorithm of 
Featherstone (7). A simplified version of Featherstone’s 
recursive Inverse Dynamics algorithm (7) is used for torsion 
angle gradient-driven refinement. 

The second major component we describe is the tree-
generation step required for the recursive algorithms. This 
amounts to a rigidity analysis, assuming that all bonds and 
bond-angles are fixed. A comprehensive mathematical 
treatment of this problem and an outline of a fast, patented 
“pebble-game” algorithm were published by Jacobs (8, 9). We 
chose to use a different approach to the tree generation, which 
is also fast and works correctly for the vast majority of practical 
cases. 

In the following we adopt the nomenclature and notation of 
Featherstone (7). 

RECURSIVE DYNAMICS ALGORITHMS 
A comprehensive overview of the history of recursive 

dynamics algorithms was given by Mukherjee and Anderson 
(11). Recently, Featherstone published a very detailed treatment 
of this subject (7), along with MATLAB sources of key 
algorithms (12). Our work is based directly on these sources 
and uses the nomenclature of Featherstone throughout. Our 
main addition to Featherstone’s work is an object-oriented 
framework for a joint library, and the algorithms for connecting 
an atomic macromolecular model to the core dynamics 
algorithms. This includes algorithms for converting gradients 
with respect to Cartesian atomic coordinates, as they were 
available already in our existing phenix.refine framework, to 
external forces suitable for the rigid body dynamics algorithms. 
The underlying equations can be found in Schwieters and Clore 
(13), which in turn is heavily based on work by Jain, Vaidehi 
and Rodriguez (14). Torsion angle minimization is 
implemented using the recursive Inverse Dynamics algorithm 
of Featherstone (7) with all velocities set to zero. We are using 
a simplified version of the algorithm in which all calculations 
involving velocities and inertia matrices are removed. 

For uniformity, in our application we work exclusively 
with external forces, but the ability of the original algorithms to 
also handle internal forces is preserved. 

Our reference implementation of the complete dynamics 
engine makes use of the high-level Python programming 

language (15). The self-contained result is very compact and 
organized in a reusable way (16). 

RIGIDITY ANALYSIS AND TREE GENERATION 
Recursive dynamics algorithms require a spanning tree 

structure of all the rigid bodies in the system. This is described 
in great detail by Featherstone (7). To generate such a spanning 
tree for a molecular structure, we abstract the bonding model to 
a mathematical graph of vertices (representing the atoms) and 
edges (representing the bonds). 

The torsion angle parameterization implies that all bonds 
and bond-angles are fixed, leaving torsion angles as the only 
remaining degrees of freedom. We approached the rigidity 
analysis and tree generation from an equivalent view of 
rotatable bonds. In an acyclic tree, all bonds are rotatable. 
However, if there are loops, as found in most molecular 
structures, certain bonds are no longer rotatable. Groups of 
vertices form rigid clusters in which all distances between all 
vertices in the cluster are fixed. The simplest examples of 
(sub)sets of vertices forming rigid clusters are loops of up to six 
vertices. This follows, for example, directly from the work of 
Jacobs (8). Larger loops of size N have N-6 de-localized 
degrees of freedom. 

Systematic evaluations of rigidity matrices (17) lead us to 
a simple but powerful observation. It applies to the situation of 
two pivot vertices connected by three arches, as illustrated in 
Fig. 1. Let Ni be the number of vertices in each arch i 
(excluding the pivot vertices), with i={0,1,2} and Ni > 0. We 
found that a configuration of three arches is a rigid cluster only 
if Ni < 6 for each i, and the sum of Ni < 10. 

 

 
 
Figure 1. Illustration for the 3-arch rigidity rules. This example 

configuration is not rigid because the sum of the vertices in the three 
arches (4+3+5) is not less than 10. 

 
Using the observation, we define rigid clusters by 

searching for rigid loops and rigid three-arch configurations. 
Abstracting each rigid cluster to a meta-vertex, and reducing 
the original edges accordingly, we repeat the procedure, until 
no new clusters are found. We applied this algorithm to a 
library of about 8 million drug-like compounds obtained from 
the ZINC database (18). For all these compounds, the rigid 
clusters are determined correctly, as verified by comparison 
with rigidity matrix calculations. We also tested with a large 
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subset of the CCDC database (19), limited to structures with 
less than 80 atoms, since the rigidity matrix verification is very 
slow for larger structures. We found only 71 out of 106835 
cases with missed rigid clusters. 

When building the spanning tree of rigid clusters, large-
scale loops, such as loops due to disulfide bonds in proteins, 
present special challenges (11). This is true even if there are no 
missed rigid clusters. Our approach is to cut large-scale loops, 
and to replace the constraints with harmonic potentials 
restraining the bond distances and bond angles. In our context, 
these potentials are readily available since they are widely used 
in restrained refinement (2). 

In the rare cases of missed rigid clusters, there will be a 
few additional restraints that could be handled as constraints. 

TORSION ANGLE REFINEMENT AND DYNAMICS 
MODEL 

In our implementation, the Featherstone system model (7), 
the result of the rigidity analysis and tree generation, and a 
potential object, are managed by a TARDY model, short for 
Torsion Angle Refinement and Dynamics model. The TARDY 
model provides methods for computing the moved Cartesian 
coordinates 

€ 

xmoved  of the mass points, the kinetic energy 

€ 

Ekin , 
potential energy 

€ 

Epot , and the generalized accelerations 

€ 

˙ ̇ q . 
Calculation of the potential energy and gradients of the 
potential energy w.r.t. Cartesian coordinates is delegated to the 
potential object. In this way, the TARDY model can be reused 
with different potentials. Currently implemented are: 
- A simple reference potential object for quick testing, which 

restrains the Cartesian coordinates 

€ 

xmoved  to reference 
coordinates 

€ 

xreference . The harmonic restraints are of the 
form 

€ 

(xmoved − xreference )
2 ; the potential energy is the sum of 

these terms over all mass points. 
- A real-space potential object combining a real-space 

target function and geometry restraints (2, 20). 
- A reciprocal-space potential object combining various 

standard reciprocal-space target functions (21) and 
geometry restraints. 

The TARDY model also provides methods for the assignment 
of initial velocities, velocity scaling to obtain a given kinetic 
energy, performing a dynamics time step, and performing 
gradient-driven minimization using the L-BFGS quasi-Newton 
minimizer (3). The TARDY model automatically keeps track of 
all interdependencies of the calculations involved, maximizing 
ease of reusability and protection against inadvertently 
introducing inconsistencies. 

 
Our procedure for performing the integration for a 

dynamics step is the simplest possible, essentially (in this 
order): 

time step positions: 

€ 

qt+Δt = qt + ˙ q Δt   (1) 
time step velocities: 

€ 

˙ q t+Δt = ˙ q t + ˙ ̇ q Δt   (2) 
The velocity time step uses Eq. 2 exactly for all joint types. The 
positional time step employs Featherstone’s Equation 4.3 for 

the spherical joint and the rotational components of the 6-DoF 
joint. For our purposes, we did not find it necessary to explore 
more sophisticated integration algorithms. 

 
The assignment of initial velocities is based on the simple 

idea to scale the generalized velocities 

€ 

˙ q  of each joint 
according to the mass that is moved by the joint. For this, the 
accumulated spatial inertia matrix for each joint is computed by 
traversing the spanning tree from the leaves to the root via 

 
 

€ 

Ii
accu = Ii + i X j

*

j∈µ(i)
∑ I j

accu j Xi    (3) 

 
similar to the first equation in Pass 2 of Table 7.1 of (7). In a 
loop over all joints, each 

€ 

˙ q i,k  element 

€ 

k  of joint 

€ 

i is set to unity 
in turn, with all other elements held at zero. The corresponding 

€ 

˙ q i,k
scale  factor is obtained via: 

 
 

€ 

˙ q i,k
scale = 1/ Ekin     (4) 

 
with: 

 

€ 

Ekin = viIi
accuvi

vi = Si ˙ q i
    (5) 

 
In the next step, generalized velocities are assigned by 
randomly drawing from Gaussian distributions with standard 
deviations 

€ 

˙ q i,k
scale . The kinetic energy 

€ 

Ekin
random  of the entire 

system obtained in this way fluctuates around unity. An exact 
desired kinetic energy 

€ 

Ekin
target  can be obtained by multiplying all 

generalized velocities with the factor: 
 
 

€ 

Ekin
target /Ekin

random     (6) 
 

We note that the procedure for obtaining 

€ 

˙ q scale
i,k  is 

equivalent to setting all 

€ 

˙ q  in the entire system to zero, except 
for 

€ 

˙ q i,k  which is set to unity, performing a positional time step 
with 

€ 

Δt =1, computing the kinetic energy of the entire system, 
which is then substituted into Eq. 4. 

 
For gradient-driven minimization, gradients w.r.t. the 

generalized positional coordinates 

€ 

q  are required. For the 
translational components of the 6-DoF joint and for the revolute 
joint the expressions for the gradients are straightforward. For 
the spherical joint and the rotational components of the 6-DoF 
joint the expressions are more involved. If Euler angles are 
used, expression found in (7) and (22) can be reused. We are 
not aware of literature with gradient expressions for Euler 
parameters. An essential step is to handle non-normalized Euler 
parameters as produced by the minimizer. For this, gradients 
w.r.t. non-normalized Euler parameters need to be converted to 
gradients w.r.t. normalized Euler parameters. By using the chain 
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rule, we arrived at this coefficient matrix 

€ 

Cpg  for the gradient 
conversion: 
 

 

€ 

Cpg =

c0,0 c0,1 c0,2 c0,3
c0,1 c1,1 c1,2 c1,3
c0,2 c1,2 c2,2 c2,3
c0,3 c1,3 c2,3 c3,3

 

 

 
 
 
 

 

 

 
 
 
 

/a3   (7) 

With: 

 

€ 

c0,0 = p1
2 + p2

2 + p3
2

c1,1 = p0
2 + p2

2 + p3
2

c2,2 = p0
2 + p1

2 + p3
2

c3,3 = p0
2 + p1

2 + p2
2

c0,1 = -p0p1
c0,2 = -p0p2
c0,3 = -p0p3
c1,2 = -p1p2
c1,3 = -p1p3
c2,3 = -p2p3

a = p0
2 + p1

2 + p2
2 + p3

2

   (8) 

 
Here the 

€ 

pi  are the non-normalized parameters. 

TESTS USING THE REFERENCE POTENTIAL 
OBJECT 

The main purpose of the reference potential object is to 
facilitate tests ensuring that all parts of the TARDY model 
implementation are working properly. The primary measures of 
quality exercised are: 
- Agreement of analytical gradients and finite difference 

gradients of the potential energy w.r.t. generalized 
coordinates. This straightforward test is integrated in trial 
gradient-driven minimizations of a variety of small 
molecular structures. 

- Conservation of total energy over 105 dynamics steps, 
using different time step sizes. 

The reference potential object also proved useful for comparing 
Euler parameter vs. Euler angle parameterizations of the 
rotational components of the 6-DoF joint, and for comparing 
Featherstone’s parameterization of the translational components 
of the 6-DoF joint with a simpler alternative. Featherstone sets 

 
 

€ 

r = E−1 q5 ,q6 ,q7[ ]T    (9) 
 
(see Table 4.1 in (7)). The simpler alternative we explored is: 
 
 

€ 

r = q5 ,q6 ,q7[ ]T     (10) 
 

Fig. 2 shows the results of our comparisons of dynamics 
simulations of the motion of a 6-DoF body. The green and the 
blue plot employ Eq. 9, while the black and the red plots 
employ Eq. 10. Evidently, the energy is better conserved if Eq. 
10 is used. The accuracy problem of Eq. 9 is actually 
mentioned in Example 4.5 of (7). Therefore we decided to use 
Eq. 10 in all our following work. We note that this is the only 
point at which our implementation deviates from the algorithms 
as presented in (7). 

 
Figure 2. Energy conservation over 105 dynamics steps, Euler angles 

vs. Euler parameters, and Eq. 9 vs. Eq. 10. 
 
The black and the green plot in Fig. 2 employ Euler parameters, 
while the red and the blue plot employ Euler angles; the 
equations used can be found in section 4.5 of (7). The 
motivation to implement both was mutual validation: if two 
different approaches deliver meaningful and very similar 
results, it is safe to conclude that both are correct. Clearly, Fig. 
2 validates our implementations. It was a small surprise to see 
that the energy conservation is slightly better for Euler angles. 
This observation persisted when reviewing results obtained 
with other random seeds. However, the difference is much less 
significant than that between Eqs. 9 and 10. Furthermore, the 
plots employing Euler angles show discontinuities that we 
attribute to the well-known gimbal lock problem (see e.g. 
Wikipedia). 

Fig. 3 shows the results of a test series for gradient-driven 
minimization of the orientation of a 6-DoF body; in the 
crystallographic literature this is known as rigid-body 
refinement (21, 23). In addition to the xyz Euler angle 
convention of (7), we also explored the zxz convention of (22) 
and two unusual 4-Euler-angle conventions, xyzy and yxyz, with 
redundant parameters, like Euler parameters, but composing 
rotation matrices, like the usual Euler angle conventions. In the 
notation of (7): 

 

 

€ 

Exyzy = rx(q4 )ry(q3 )rz(q2 )ry(q1)
Eyxyz = ry(q4 )rx(q3 )ry(q2 )rz(q1)

  (11) 
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Figure 3. Euler parameters vs. angles, gradient-driven minimization. The 
vertical axis shows the sum of the minimization steps needed to achieve 
convergence in 1000 trials with random displacements. The horizontal 

axis shows the number of sites in the rigid body. The plots show that the 
size of the rigid body does not have a profound influence, and that the 

results can therefore be generalized. 
 
For each parameterization, these steps were carried out: 

 
- Loop over number of sites: 2-20 

           (horizontal axis in Fig. 3) 
-     1000 trials each: 
-         random sites → original orientation 
-         random rotation → displaced orientation 
-         harmonically restrain displaced to original orientation 
-         refine back to original orientation using 

        L-BFGS minimizer (3) 
-         report total number of minimization steps 

        (vertical axis in Fig. 3) 
 
A smaller total number of minimization steps means that the 
refinement procedure is more efficient. The results in Fig. 3 
mirror results reported previously (23) in that the xyz Euler 
angle convention is better suited for rigid body refinement than 
the zxz convention (or any other convention with the first and 
third rotation around the same axis). This suggests that our 
simple test system is representative of more complex real-world 
applications and thereby supports the significance of our main 
observation: Euler parameters are the best choice for rigid-body 
refinement. This is a new result, as we are not aware of other 
rigid-body refinement programs using Euler parameters. 

Interestingly, our experimental xyzy and yxyz 4-Euler-angle 
conventions also perform better than the usual xyz convention, 
but not as well as Euler parameters. 

Considering all results presented in this section, we 
decided to use Euler parameters and Eq. 10 in all our following 
work, for both dynamics and gradient-driven minimization. 

In a final validation of the energy conservation we 
combined a 6-DoF body with a second body connected via a 
revolute joint. The kinetic energy at the start was set to unity 
with random velocities (Eqs. 3-6). The potential energy at the 
start was zero. Fig. 4 shows example plots of the kinetic, 
potential, and total energy for time step size 10-4. Tab. 1 shows 

the values of the total energy after 105 time steps as a function 
of the time step size. As expected, the dynamics simulation is 
unstable if the time step is too large. With suitable time step 
sizes, the total energy is conserved very well. 

 

 
Figure 4. Example plots of kinetic, potential, and total energy over 105 
time steps, with time step size 10-4. 6-DoF body with joint using Euler 

parameters and Eq. 10. 
 

time step size 
(arbitrary units) 

total energy after 
105 steps 

10-6 1 
10-5 1.00002 
10-4 1.00199 
10-3 1.22344 

10-2 numerical error 
(2516.81 after 31000 steps) 

Table 1. Total energy after 105 dynamics steps as a function of the time 
step size. 6-DoF body connected to second body via a revolute joint. 

TESTS USING THE REAL-SPACE POTENTIAL 
OBJECT 

Central to the real-space potential object is a 3-dimensional 
array of values proportional to the electron density in a 
crystallographic unit cell, often called an electron density map. 
In the actual refinement against experimental diffraction data 
only an approximation of the electron density is known (21). 
Typically, likelihood-weighted maps are used instead of actual 
electron density maps. For the purpose of systematic testing 
presented here, we decided to use idealized electron density 
maps, but computed with the same process as used for the 
approximate maps: first, diffraction data are predicted using the 
atomic model, then a Fourier transformation is carried out to 
obtain the real-space map from the diffraction data. This 
process is described in standard references, e.g. (21, 24). The 
real-space map is typically sampled at 

€ 

1
3  of the resolution of 

the diffraction data. Based on our previous experience, we 
decided to work with this widely used factor without exploring 
alternatives. 

The potential function 

€ 

Ers associated with the real-space 
map is simply the sum of the density values at the current 
positions of the atomic centers. The gradients of the potential 
function are obtained with the finite-difference method: each 
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atom is moved a certain distance 

€ 

±d fd  parallel to the basis 
vectors of the Cartesian system. The gradients are the 
differences of the density values at the two points 

€ 

±d fd  away 
from the atomic center, divided by 

€ 

2d fd . The density values are 
obtained via standard linear eight-point interpolation, using the 
eight nearest neighbors in the real-space map. 

The potential function used in the tests is the weighted sum 
of the real-space potential 

€ 

Ers and a potential 

€ 

Egeo  due to 
geometry restraints: 

 
 

€ 

Epot = wrsErs + Egeo    (12) 
 

The geometry restraints are in turn the sum of harmonic bond, 
angle, chirality, and planarity restraints, harmonic or sinusoidal 
dihedral restraints, and repulsive nonbonded interactions (2, 20, 
25). 

Our tests with the real-space potential cover a systematic 
exploration of the behavior of gradient-driven minimization and 
simulated annealing (5). The parameter space explored in both 
cases includes: 

 
- The resolution of the synthetic diffraction data. In actual 

applications, it is dictated by the experiment. We sampled 
four resolutions: 1.25 Å, 2.5 Å, 3.75 Å, 5 Å. 

- The real-space target weight 

€ 

wrs  of Eq. 12. 
- The value of 

€ 

d fd  for the computation of real-space 
gradients. 

- Random displacements of the atomic model, both in 
Cartesian space and in torsion-angle space. 

 
In a set of preliminary tests, we observed that the target 

weight 

€ 

wrs  is the single most important parameter. We tried the 
values 

€ 

wrs  = 1,10,30,50,100,200,250,500,1000,2000. After 
reviewing the preliminary results, we ran the final set of tests 
with the selected values 

€ 

wrs  = 10,100,500, as these sufficiently 
represent all outcomes. 

We observed that the value of 

€ 

d fd  is not very critical. We 
sampled values 

€ 

1
3 , 12 , 2 3 ,1 of the resolution of the diffraction 

data. For the final tests we settled on the factor 

€ 

1
3  (which is the 

same factor used for the sampling of the real-space map). 
We implemented two methods for the generation of 

random displacements of the atomic models, relative to the 
atomic models used for computing the idealized real-space 
maps: a method in Cartesian space, and a method in torsion-
angle space. In the Cartesian space method, atomic coordinates 
are first moved randomly parallel to the basis vectors of the 
Cartesian system. With this approach it is straightforward to 
obtain a given target root-mean-square displacement (RMSD) 
of the coordinates, but the potential energy due to the resulting 
geometry restraints generally increases to implausible values. 
This is corrected in a second stage by up to 500 steps of 
minimization of the geometry potential alone. The torsion-angle 
space method for generating random displacements is a short 

dynamics simulation starting with random velocities and a 
small time step. The time step is gradually increased until the 
RMSD of the coordinates is above a certain lower threshold. If 
the RMSD increases beyond a certain upper threshold in the 
last step, the step is discarded and repeated with a smaller time 
step, until the RMSD falls into the range between the lower and 
upper threshold. The target RMSD values used in our tests are 

€ 

1
3 , 2 3 ,1 times the resolution of the synthetic diffraction data, 

representing modest to very large deviations. The actual RMSD 
values obtained with both methods outlined above are 
distributed around the target values. 

 
In the simulated annealing (SA) tests, these additional 

parameters were explored: 
- The start temperature. In preliminary tests we tried 2500 K, 

5000 K, 10000 K. After reviewing the results we chose 
2500 K and 5000 K for the final set of tests. 

- The number of cooling steps to reach the final temperature 
of 300 K. The values used are 250 and 500. 

The temperature is decreased linearly after each step. Velocity 
scaling (Eq. 6) is used to enforce the target temperature. The 
conversion between temperature and kinetic energy is given by 
 

 

€ 

temperature =
Ekin
1
2 kd

   (13) 

 
where 

€ 

k = 0.0488878  is the Boltzmann constant in AKMA 
units (25), a system of units compatible with the 
parameterization of the geometry restraints. 

€ 

d  is the number of 
degrees of freedom, which we set to three times the number of 
atoms in both Cartesian space and torsion-angle space, in order 
to achieve a universal mapping between kinetic energy and 
temperature. 
 

All tests outlined above were run in both Cartesian space 
and torsion-angle space, but using the same general 
implementation: for the torsion angle space runs, the rigidity-
analysis and tree generation procedure was used to define rigid 
bodies connected by revolute joints to a 6-DoF base body; for 
the Cartesian space runs, each atom was a separate body with a 
3-DoF translational joint. 

 
Four small poly-peptide models were prepared for the 

tests. The smallest model (GLY-GLY box) consists of two 
glycines embedded in an artificial unit cell constructed around 
the molecule, with a 5 Å surrounding buffer. Similarly, the next 
larger model (LYS-PRO-TPR box) is a chain of lysine-proline-
tryptophan in an artificial unit cell. The third model (1YJP box) 
is PDB entry 1YJP but in an artificial unit cell and with the 
water molecules deleted. The fourth model (1YJP cryst.) is the 
same molecule in the crystallographic unit cell with space 
group P21 (26). The three “box” models are designed to 
exercise the ability of the minimization and SA procedures to 
pull the randomly displaced models back into the original 
configuration, guided by the real-space map, without 
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interference from neighboring molecules (hence the 5 Å 
buffer). The 1YJP cryst. model was chosen to explore the 
influence of neighboring density. 

 
The total number of final minimization tests run was 6912: 
   4 models 
x 4 resolutions 
x 3 weights 
x 2 parameter spaces (Cartesian, torsion angle) 
x 3 target RMSD 
x 2 methods of random displacements 
x 12 random seeds 
 
The total number of final SA tests run was 27648: 
   6912 as before 
x 2 start temperatures 
x 2 values for the number of cooling steps 
 

The time step used in all SA tests was 1 femto second. Due to 
the continuous velocity scaling, this value is not very critical. 

 
The results of the tests were evaluated by inspection of 

start RMSD vs. final RMSD scatter plots. Each plot includes 
the results of 36 tests: 3 target RMSD x 12 random seeds. All 
960 plots are archived for review (see Appendix). Fig. 5 shows 
selected plots as a typical example for the influence of the real-
space weight 

€ 

wrs  in SA runs. The weight 

€ 

wrs  = 10 leads to 
many final RMSD significantly larger than the start RMSD. 
The weights 

€ 

wrs  = 100 and 500 both give significantly better 
results. Comparison of the torsion-angle and Cartesian SA plots 
in Fig. 5 shows that in this case torsion-angle SA clearly 
outperforms equivalent runs in Cartesian space. Fig. 6 shows a 
counter example as observed mostly with low-resolution data. 
In this situation the real-space map provides only limited 
guidance. Fig. 6 illustrates the tendency of Cartesian SA to 
essentially not move the model, and the tendency of torsion-
angle SA to move the model further away from the target 
configuration. Tab. 2 shows a more global representation of the 
test results, excluding tests with 

€ 

wrs =10  for reasons apparent 
from Fig. 5. The primary motivation for the design of Tab. 2 is 
to deliniate the situations in which torsion-angle SA 
outperforms Cartesian SA. For this, two measures were used: 
(a) the smallest final RMSD found in each plot and (b) the 
mean final RMSD. The values for corresponding torsion-angle 
and Cartesian plots were compared. The “tt” row in Tab. 2 
shows the number of times both measures are smaller in the 
torsion-angle plot, “tc” shows the number of times the smallest 
final RMSD value is smaller in the torsion-angle plot, but the 
mean is smaller in the Cartesian plot, “ct” is vice versa, and 
“cc” shows the number of times both measures are better in the 
Cartesian plot. The counts are separated by model and type of 
random displacement procedure, but are the sum for all other 
parameters. I.e. the table can be understood to reflect overall 
expectations averaged over resolutions, real-space weights, 
start temperatures, and number of cooling steps. The main 

pattern that emerges from Tab. 2 is that torsion-angle SA 
outperforms Cartesian SA for the smaller models, but that it can 
be the other way around for larger models, in particular if there 
is neighboring density (1YJP cryst.). Tab. 3 was prepared in a 
manner very similar to Tab. 2, but comparing results of the 
minimization test runs. The main pattern is very similar in both 
tables. 

 
Figure 5. Results of Simulated Annealing tests. Model: 1YJP (box), 

“w_rs” is the real-space weight wrs, resolution of diffraction data: 3.75 Å, 
random displacements in torsion-angle space, start temperature 5000 K, 

500 cooling steps. 

CONCLUSION 
The first set of test results presented here, based on the 

simple reference potential object, establishes that our 
implementation of the core torsion angle refinement and 
dynamics algorithms uses the best available parameterizations 
(Euler parameters, Eq. 10), produces correct analytical 
gradients for minimization, and correctly conserves the total 
energy in dynamics (Fig. 4). The second set of tests, based on 
the real-space potential object hint that it could be beneficial to 
subdivide large molecules into smaller rigid units, e.g. groups 
of three peptides, for torsion-angle minimization or SA, and to 
use standard geometry restraints to maintain connectivity 
between the units. We are planning to explore this idea, in 
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addition to integrating our procedures for more traditional 
torsion-angle SA in the phenix.refine program. 

 
Figure 6: Results of Simulated Annealing tests. Model: 1YJP (cryst.), 

“resol.” is the resolution of diffraction data, real-space weight: wrs=100, 
random displacements in Cartesian space, start temperature 5000 K, 

500 cooling steps. 
 

 GLY-GLY 
(box) 

LYS-PRO-TRP 
(box) 

1YJP 
(box) 

1YJP 
(cryst.) 

rand. 
displ. t.a. cart. t.a. cart. t.a. cart. t.a. cart. 

tt 26 22 28 17 16 5 15 5 
tc 0 4 0 1 6 0 0 0 
ct 6 6 4 6 9 14 7 13 
cc 0 0 0 8 1 13 10 14 
Table 2. Global summary of Simulated Annealing results (weight 10 

omitted). See text for details. 
 

 GLY-GLY 
(box) 

LYS-PRO-TRP 
(box) 

1YJP 
(box) 

1YJP 
(cryst.) 

rand. 
displ. t.a. cart. t.a. cart. t.a. cart. t.a. cart. 

tt 5 3 5 1 3 1 1 0 
tc 3 4 1 3 1 1 3 2 
ct 0 0 0 0 0 0 0 0 
cc 0 1 2 4 4 6 4 6 

Table 3. Global summary of minimization results (weight 10 omitted). 
See text for details. 
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APPENDIX 
The algorithms described here are part of the 

Computational Crystallography Open Source Toolbox (10), 
available under http://cctbx.sourceforge.net/. The source code 
for the procedures presented here can be found in these places: 

 
- Rigidity analysis and tree generation with associated tests: 

scitbx/graph/ 
- TARDY model, Featherstone system model, joint library, 

tests using the reference potential object: 
scitbx/rigid_body/essence/ 

- Prototype code incl. scripts used to prepare Fig. 2: 
scitbx/rigid_body/proto/ 

- Scripts for running and evaluating tests using the real-
space potential objects: mmtbx/refinement. 
The resulting plots are archived under: 
http://cci.lbl.gov/tardy_msndc2009/ 
 

Completely self-contained source code bundles are available 
under: http://cci.lbl.gov/cctbx_build/ 
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